The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh...A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.展开更多
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and...In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.展开更多
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni...Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic...For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.展开更多
Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well ...Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.展开更多
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch...Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.展开更多
The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical...The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas).This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE)between calculated and predicted (BI).The prediction accuracy achieved by TOB using just five well logs (Gr,ρb,Ns,Rs,Dt) to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R^(2)~0.790.At a sampling density of about one sample per0.1 ft BI is predicted with RMSE~0.008 and R^(2)~0.995.Adding a stratigraphic height index as an additional (sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R^(2)~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.展开更多
A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth ...A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth is200 MHz,which solves the large bandwidth,high-speed signal acquisition and processing problems.At present,the data acquisition system is successfully used in broadband receiver test systems.展开更多
Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of ...Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of the Fieller-type confidence interval and the asymptotic confidence interval in crossover designs with serial-sampling data are here derived.Simulation studies were conducted to evaluate the derived power functions.Results Simulation studies show that two power functions can provide precise power estimates when normality assumptions are satisfied and yield conservative estimates of power in cases when data are log-normally distributed.The intra-correlation showed a positive correlation with the power of the bioequivalence test.When the expected ratio of the AUCs was less than or equal to 1, the power of the Fieller-type confidence interval was larger than the asymptotic confidence interval.If the expected ratio of the AUCs was larger than 1, the asymptotic confidence interval had greater power.Sample size can be calculated through numerical iteration with the derived power functions.Conclusion The Fieller-type power function and the asymptotic power function can be used to determine sample sizes of crossover trials for bioequivalence assessment of topical ophthalmic drugs.展开更多
The real-time data acquisition system controlled by microcomputer is applied widely. It is very important how to use the inner timer of microcomputer to realize accurate timing of sampling-interval in the application ...The real-time data acquisition system controlled by microcomputer is applied widely. It is very important how to use the inner timer of microcomputer to realize accurate timing of sampling-interval in the application of data acquisition. This paper discusses in detail the procedure that we use the inner timer of microcomputer to realize real-time data acquisition with high timing-accuracy, and analyze the error of timing-accuracy. It also gives us a relevant routine programmed in assembly language.展开更多
This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usua...This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.展开更多
The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.T...The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.This research uses a technique called sampling,which selects a representative subset of the data points,manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined,and finally,creates models.Sampling uses a small proportion of the original data for analysis and model training,so that it is relatively faster while maintaining data integrity and achieving accurate results.Two deep neural networks,AlexNet and DenseNet,were used in this research to test two sampling techniques,namely sampling with replacement and reservoir sampling.The dataset used for this research was divided into three classes:acceptable,flagged as easy,and flagged as hard.The base models were trained with the whole dataset,whereas the other models were trained on 50%of the original dataset.There were four combinations of model and sampling technique.The F-measure for the AlexNet model was 0.807 while that for the DenseNet model was 0.808.Combination 1 was the AlexNet model and sampling with replacement,achieving an average F-measure of 0.8852.Combination 3 was the AlexNet model and reservoir sampling.It had an average F-measure of 0.8545.Combination 2 was the DenseNet model and sampling with replacement,achieving an average F-measure of 0.8017.Finally,combination 4 was the DenseNet model and reservoir sampling.It had an average F-measure of 0.8111.Overall,we conclude that both models trained on a sampled dataset gave equal or better results compared to the base models,which used the whole dataset.展开更多
GoTaTM from ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
Go Tafrom ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect ...In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.展开更多
In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train ...In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.展开更多
Fourier transform is a basis of the analysis. This paper presents a kind ofmethod of minimum sampling data determined profile of the inverted object ininverse scattering.
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.
基金The High Technology Research Plan of Jiangsu Prov-ince (No.BG2004034)the Foundation of Graduate Creative Program ofJiangsu Province (No.xm04-36).
文摘A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.
基金The National Basic Research Program of China(973Program)(No.2009CB320505)the Natural Science Foundation of Jiangsu Province(No. BK2008288)+1 种基金the Excellent Young Teachers Program of Southeast University(No.4009001018)the Open Research Program of Key Laboratory of Computer Network of Guangdong Province (No. CCNL200706)
文摘In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.
基金Supported by the Open Researches Fund Program of L IESMARS(WKL(0 0 ) 0 30 2 )
文摘Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
基金supported by the National Key Research and Development Program of China(2018YFB1003700)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)+2 种基金the“333” project of Jiangsu Province(BRA2017228 BRA2017401)the Talent Project in Six Fields of Jiangsu Province(2015-JNHB-012)
文摘For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.
基金Supported by National Natural Science Foundation of China(Grant No.51175028)Great Scholars Training Project(Grant No.CIT&TCD20150312)Beijing Recognized Talent Project(Grant No.2014018)
文摘Reliability assessment of the braking system in a high?speed train under small sample size and zero?failure data is veryimportant for safe operation. Traditional reliability assessment methods are only performed well under conditions of large sample size and complete failure data,which lead to large deviation under conditions of small sample size and zero?failure data. To improve this problem,a new Bayesian method is proposed. Based on the characteristics of the solenoid valve in the braking system of a high?speed train,the modified Weibull distribution is selected to describe the failure rate over the entire lifetime. Based on the assumption of a binomial distribution for the failure probability at censored time,a concave method is employed to obtain the relationships between accumulation failure prob?abilities. A numerical simulation is performed to compare the results of the proposed method with those obtained from maximum likelihood estimation,and to illustrate that the proposed Bayesian model exhibits a better accuracy for the expectation value when the sample size is less than 12. Finally,the robustness of the model is demonstrated by obtaining the reliability indicators for a numerical case involving the solenoid valve of the braking system,which shows that the change in the reliability and failure rate among the di erent hyperparameters is small. The method is provided to avoid misleading of subjective information and improve accuracy of reliability assessment under condi?tions of small sample size and zero?failure data.
基金funded by the Cora Topolewski Cardiac Research Fund at the Children’s Hospital of Philadelphia(CHOP)the Pediatric Valve Center Frontier Program at CHOP+4 种基金the Additional Ventures Single Ventricle Research Fund Expansion Awardthe National Institutes of Health(USA)supported by the program(Nos.NHLBI T32 HL007915 and NIH R01 HL153166)supported by the program(No.NIH R01 HL153166)supported by the U.S.Department of Energy(No.DE-SC0022953)。
文摘Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.
文摘The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas).This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE)between calculated and predicted (BI).The prediction accuracy achieved by TOB using just five well logs (Gr,ρb,Ns,Rs,Dt) to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R^(2)~0.790.At a sampling density of about one sample per0.1 ft BI is predicted with RMSE~0.008 and R^(2)~0.995.Adding a stratigraphic height index as an additional (sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R^(2)~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.
文摘A field-programmable gate array(FPGA)based high-speed broadband data acquisition system is designed.The system has a dual channel simultaneous acquisition function.The maximum sampling rate is 500 MSa/s and bandwidth is200 MHz,which solves the large bandwidth,high-speed signal acquisition and processing problems.At present,the data acquisition system is successfully used in broadband receiver test systems.
基金supported by sub-project of National Major Scientific and Technological Special Project of China for ‘Significant New Drugs Development’[2015ZX09501008-004]
文摘Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of the Fieller-type confidence interval and the asymptotic confidence interval in crossover designs with serial-sampling data are here derived.Simulation studies were conducted to evaluate the derived power functions.Results Simulation studies show that two power functions can provide precise power estimates when normality assumptions are satisfied and yield conservative estimates of power in cases when data are log-normally distributed.The intra-correlation showed a positive correlation with the power of the bioequivalence test.When the expected ratio of the AUCs was less than or equal to 1, the power of the Fieller-type confidence interval was larger than the asymptotic confidence interval.If the expected ratio of the AUCs was larger than 1, the asymptotic confidence interval had greater power.Sample size can be calculated through numerical iteration with the derived power functions.Conclusion The Fieller-type power function and the asymptotic power function can be used to determine sample sizes of crossover trials for bioequivalence assessment of topical ophthalmic drugs.
文摘The real-time data acquisition system controlled by microcomputer is applied widely. It is very important how to use the inner timer of microcomputer to realize accurate timing of sampling-interval in the application of data acquisition. This paper discusses in detail the procedure that we use the inner timer of microcomputer to realize real-time data acquisition with high timing-accuracy, and analyze the error of timing-accuracy. It also gives us a relevant routine programmed in assembly language.
基金supported by the National Natural Science Foundation of China(61374090)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Taishan Scholarship Project of Shandong Province
文摘This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.
文摘The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.This research uses a technique called sampling,which selects a representative subset of the data points,manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined,and finally,creates models.Sampling uses a small proportion of the original data for analysis and model training,so that it is relatively faster while maintaining data integrity and achieving accurate results.Two deep neural networks,AlexNet and DenseNet,were used in this research to test two sampling techniques,namely sampling with replacement and reservoir sampling.The dataset used for this research was divided into three classes:acceptable,flagged as easy,and flagged as hard.The base models were trained with the whole dataset,whereas the other models were trained on 50%of the original dataset.There were four combinations of model and sampling technique.The F-measure for the AlexNet model was 0.807 while that for the DenseNet model was 0.808.Combination 1 was the AlexNet model and sampling with replacement,achieving an average F-measure of 0.8852.Combination 3 was the AlexNet model and reservoir sampling.It had an average F-measure of 0.8545.Combination 2 was the DenseNet model and sampling with replacement,achieving an average F-measure of 0.8017.Finally,combination 4 was the DenseNet model and reservoir sampling.It had an average F-measure of 0.8111.Overall,we conclude that both models trained on a sampled dataset gave equal or better results compared to the base models,which used the whole dataset.
文摘GoTaTM from ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
文摘Go Tafrom ZTE is the world’s first CDMA-based system. Now, ZTE proudly introduces its third-generation digital trunking system featuring a centralized dispatch,
文摘In recent years,with the rapid development of high-speed railways(HSRs),power interruptions or disturbances in traction power supply systems have become increasingly dangerous.However,it is often impossible to detect these faults immediately through single-point monitoring or collecting data after accidents.To coordinate the power quality data of both traction power supply systems(TPSSs)and high-speed trains(HSTs),a monitoring and assessing system is proposed to access the power quality issues on HSRs.By integrating train monitoring,traction substation monitoring and data center,this monitoring system not only realizes the real-time monitoring of operational behaviors for both TPSSs and HSTs,but also conducts a comprehensive assessment of operational quality for train-network systems.Based on a large number of monitoring data,the field measurements show that this real-time monitoring system is effective for monitoring and evaluating a traction-network system.
基金supported by National Natural Science Foundation of China(U2268206,T2222015)Beijing Natural Science Foundation(4232031)+1 种基金Key Fields Project of DEGP(2021ZDZX1110)Shenzhen Science and Technology Program(CJGJZD20220517141801004).
文摘In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.
文摘Fourier transform is a basis of the analysis. This paper presents a kind ofmethod of minimum sampling data determined profile of the inverted object ininverse scattering.