To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ...Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.展开更多
Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization...For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.展开更多
On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country...On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country's high-speed locomotive traction gears. The measures include the fol- lowing five aspects : optimally selecting the material and heat treatment process , optimally designing the tooth profile . reasonably choosing the manufacture accuracy and technique , optimally choosing the lubricant and the way of lubrication and seal , improving the dynamic feature of the gearing. In the respect of the tooth profile , a hob with optimal cutter angles is designed to make root thickness on the dangerous section as large as possible and the stress concentration as small as possible. Ad- dendum modification coefficient is optimized to minimize the maximum flash temperature in the course of meshing. Finally . finite element analysis method is used to calculate the deformation and the stress of teeth accurately. And on this basis , optimal profile correction and axial modification have been designed with regard to the start , continuious running and high speed travel of the loco- motive .展开更多
Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very n...Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.展开更多
The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-pl...A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-plough.The results show that the streamline bodies of the head/tail car are the most important sound sources,respectively,accounting for 23.7%and 33.7%of the total sound energy.Compared with the streamline body of tail head,the streamline body of head car is more biased towards high frequency for the sound source energy.The A-weighted radiated noise of the train body is characterized by broadband sound(mainly in the range of 1-4 kHz)and peak features(especially at 2 kHz).The snow-plough with the maximum expansion length can mitigate the strong peak effect of the sound at 2 kHz,reduce the total sound energy,and show the best acoustic radiation performance in the four schemes.The numerical computation model was checked by the wind tunnel test results.展开更多
Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the...Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the abstraction level is nowadays widely seen as a solution to bridge the gap between the increasing system complexity and the low design productivity. For this, several system-level design tools and methodologies have been introduced to efficiently explore the design space of heterogeneous signal processing systems. In this paper, we demonstrate the effectiveness and the flexibility of the Sesame/Artemis system-level modeling and simulation methodology for efficient peformance evaluation and rapid architectural exploration of the increasing complexity heterogeneous embedded media systems. For this purpose, we have selected a system level design of a very high complexity media application;a H.264/AVC (Advanced Video Codec) video encoder. The encoding performances will be evaluated using system-level simulations targeting multiple heterogeneous multiprocessors platforms.展开更多
China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of...China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.展开更多
This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental pr...This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental principles of dynamics. The result is a design formula for the minimum curve radius needed to prevent derailment. Aside from the rail car geometric and physical properties, the minimum curve radius depends upon the square the train speed. An illustrative example shows that the wheel gyroscopic effect is destabilizing and additive to the centrifugal force derailment tendency. From a track design perspective, however, the gyroscopic effect is relatively small compared with the centrifugal force effect.展开更多
An efficient design method for a 24 × 24 bit +48 bit parallel saturating multiply-accumulate (MAC) unit is described. The augend in the MAC is merged as a partial product into Wallace tree array. The optimized...An efficient design method for a 24 × 24 bit +48 bit parallel saturating multiply-accumulate (MAC) unit is described. The augend in the MAC is merged as a partial product into Wallace tree array. The optimized saturation detection logic is proposed. The 679. 2 μm × 132. 5μm area size has been achieved in 0. 18 μm 1.8 V 1P6M CMOS technology by the full-custom circuit layout design. The simulation results show that the design way has significantly less area (about 23.52% reduction) and less delay than those of the common saturating MAC based on standard cell library.展开更多
The planned missions to explore the surfaces of the Moon and Mars require high exploration efficiency,thus imposing new demands on the mobility system of planetary rovers.In this paper,a design method for a high-speed...The planned missions to explore the surfaces of the Moon and Mars require high exploration efficiency,thus imposing new demands on the mobility system of planetary rovers.In this paper,a design method for a high-speed planetary rover(HPR)is proposed,and the representative configurations are modeled and simulated.First,the influence of the planetary surface environment on the design of HPRs is analyzed,and the design factors for HPRs are determined by studying a single-wheel suspension.Second,a design methodology for HPRs is proposed.The adaptive suspension mechanisms of a four-wheeled rover are synthesized using the all-wheel-attachment condition and position and orientation characteristics theory,which are expressed in the form of a graph theory for the increase in elastic components and active joints.Finally,a dynamic model is built,and a simulation is carried out for the proposed rover.The validity of the proposed method and rover is verified,thus highlighting their potential application in future planetary exploration.展开更多
Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
This paper focuses on a pattern design method for a 3D triangular garment surface. Firstly, some definitions of 3D style lines are proposed for designing the boundaries of patterns as drawing straight lines or splines...This paper focuses on a pattern design method for a 3D triangular garment surface. Firstly, some definitions of 3D style lines are proposed for designing the boundaries of patterns as drawing straight lines or splines on the triangular surface. Additionally some commonly used style lines are automatically generated to enhance design efficiency. Secondly, after style lines are preprocessed, a searching method is presented for quickly obtaining the boundaries and patches of a pattern on the 3D trian- gular surface. Finally a new pattern design reuse method is introduced by encoding/decoding the style line information. After style lines are encoded, the pattern design information can be saved in a pattern template and when decoding this template on a new garment surface, it automates the pattern generation for made-to-measure apparel products.展开更多
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th...The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.展开更多
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
基金supported by the National Key Technology R&D Program of China (Grant 2013BAG22Q00)the China Railway Science and Technology R&D Program (2015J009-D)
文摘Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
基金financed with the means of Yingkou Institute of Technology Introduction of doctors to start the fund project (YJRC202109).
文摘For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.
文摘On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country's high-speed locomotive traction gears. The measures include the fol- lowing five aspects : optimally selecting the material and heat treatment process , optimally designing the tooth profile . reasonably choosing the manufacture accuracy and technique , optimally choosing the lubricant and the way of lubrication and seal , improving the dynamic feature of the gearing. In the respect of the tooth profile , a hob with optimal cutter angles is designed to make root thickness on the dangerous section as large as possible and the stress concentration as small as possible. Ad- dendum modification coefficient is optimized to minimize the maximum flash temperature in the course of meshing. Finally . finite element analysis method is used to calculate the deformation and the stress of teeth accurately. And on this basis , optimal profile correction and axial modification have been designed with regard to the start , continuious running and high speed travel of the loco- motive .
基金Projects(U1934207,51778630,11972379)supported by the National Natural Science Foundation of ChinaProject(2020zzts148)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GJJ200657)supported the Research Project of Jiangxi Provincial Education Department,China。
文摘Due to the wide railway network and different characteristics of many earthquake zones in China,considering the running safety performance of trains(RSPT)in the design of high-speed railway bridge structures is very necessary.In this study,in order to provide the seismic design and evaluation measure of the bridge structure based on the RSPT,a calculation model of RSPT on bridge under earthquake was established,and the track surface response measure when the derailment coefficient reaches the limit value was calculated by referring to 15 commonly used ground motion(GM)intensity measures.Based on the coefficient of variation of the limit value obtained from multiple GM samples,the optimal measures were selected.Finally,the limit value of bridge seismic response based on RSPT with different train speeds and structural periods was determined.
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.
基金Project(ANCL20200302)supported by the Key Laboratory of Aerodynamic Noise ControlProject(JZ2020HGQA0213)supported by the Fundamental Research Funds for the Central Universities,China+2 种基金Project(202010359084)supported by National Training Program of Innovation and Entrepreneurship for Undergraduates,ChinaProject(P2019-J008)supported by the Research on Key Technology of New Generation Fuxing EMU Platform,ChinaProject(2017YFB1201103-02)supported by National key R&D Plan,China。
文摘A set of acoustic optimization design methods is established by combining the flow field deterioration theory and the acoustic analogy theory,and applied to the acoustic optimization design of high-speed train snow-plough.The results show that the streamline bodies of the head/tail car are the most important sound sources,respectively,accounting for 23.7%and 33.7%of the total sound energy.Compared with the streamline body of tail head,the streamline body of head car is more biased towards high frequency for the sound source energy.The A-weighted radiated noise of the train body is characterized by broadband sound(mainly in the range of 1-4 kHz)and peak features(especially at 2 kHz).The snow-plough with the maximum expansion length can mitigate the strong peak effect of the sound at 2 kHz,reduce the total sound energy,and show the best acoustic radiation performance in the four schemes.The numerical computation model was checked by the wind tunnel test results.
文摘Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the abstraction level is nowadays widely seen as a solution to bridge the gap between the increasing system complexity and the low design productivity. For this, several system-level design tools and methodologies have been introduced to efficiently explore the design space of heterogeneous signal processing systems. In this paper, we demonstrate the effectiveness and the flexibility of the Sesame/Artemis system-level modeling and simulation methodology for efficient peformance evaluation and rapid architectural exploration of the increasing complexity heterogeneous embedded media systems. For this purpose, we have selected a system level design of a very high complexity media application;a H.264/AVC (Advanced Video Codec) video encoder. The encoding performances will be evaluated using system-level simulations targeting multiple heterogeneous multiprocessors platforms.
基金Projects(51878674,52108433,52022113) supported by the National Natural Science Foundation of ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction,China+2 种基金Project(2021JJ40587) supported by the Hunan Provincial Natural Science Foundation of ChinaProject(21B0309) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(HSR202004) supported by the Open Foundation of National Engineering Research Center of High-Speed Railway Construction Technology,China。
文摘China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.
文摘This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental principles of dynamics. The result is a design formula for the minimum curve radius needed to prevent derailment. Aside from the rail car geometric and physical properties, the minimum curve radius depends upon the square the train speed. An illustrative example shows that the wheel gyroscopic effect is destabilizing and additive to the centrifugal force derailment tendency. From a track design perspective, however, the gyroscopic effect is relatively small compared with the centrifugal force effect.
基金The National Natural Science Foundation of China(No.90407009),the National High Technology Research and Develop-ment Program of China(863Program) (No.2003AA1Z1340)
文摘An efficient design method for a 24 × 24 bit +48 bit parallel saturating multiply-accumulate (MAC) unit is described. The augend in the MAC is merged as a partial product into Wallace tree array. The optimized saturation detection logic is proposed. The 679. 2 μm × 132. 5μm area size has been achieved in 0. 18 μm 1.8 V 1P6M CMOS technology by the full-custom circuit layout design. The simulation results show that the design way has significantly less area (about 23.52% reduction) and less delay than those of the common saturating MAC based on standard cell library.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)the National Natural Science Foundation of China(Grant Nos.51975140,52005122)+1 种基金the“111”Project of China(Grant No.B07018)the Harbin Institute of Technology Key Project Research and Development Grant of China(Grant No.HIT2021005).
文摘The planned missions to explore the surfaces of the Moon and Mars require high exploration efficiency,thus imposing new demands on the mobility system of planetary rovers.In this paper,a design method for a high-speed planetary rover(HPR)is proposed,and the representative configurations are modeled and simulated.First,the influence of the planetary surface environment on the design of HPRs is analyzed,and the design factors for HPRs are determined by studying a single-wheel suspension.Second,a design methodology for HPRs is proposed.The adaptive suspension mechanisms of a four-wheeled rover are synthesized using the all-wheel-attachment condition and position and orientation characteristics theory,which are expressed in the form of a graph theory for the increase in elastic components and active joints.Finally,a dynamic model is built,and a simulation is carried out for the proposed rover.The validity of the proposed method and rover is verified,thus highlighting their potential application in future planetary exploration.
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.
基金Project supported by the National Natural Science Foundation of China (No. 60473129)the Ph.D Programs Foundation of the Ministry of Education of China (No. 20060335118)
文摘This paper focuses on a pattern design method for a 3D triangular garment surface. Firstly, some definitions of 3D style lines are proposed for designing the boundaries of patterns as drawing straight lines or splines on the triangular surface. Additionally some commonly used style lines are automatically generated to enhance design efficiency. Secondly, after style lines are preprocessed, a searching method is presented for quickly obtaining the boundaries and patches of a pattern on the 3D trian- gular surface. Finally a new pattern design reuse method is introduced by encoding/decoding the style line information. After style lines are encoded, the pattern design information can be saved in a pattern template and when decoding this template on a new garment surface, it automates the pattern generation for made-to-measure apparel products.
基金Project(2020YFA0710901)supported by the National Key Research and Development Program of ChinaProject(2023JJ30643)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(12372204)supported by the National Natural Science Foundation of ChinaProject(2022ZZTS0725)supported by the Self-exploration and Innovation Project for Postgraduates of Central South University,China。
文摘The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains.