Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to susta...Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.展开更多
Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber ...Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber with lower cost and high reliability, (2) how to evacuate gas out of the ETT tube in short time, (3) how to release heat or reduce temperature in the vacuum tube, (4) how to avoid vacuum discharge, (5) how to make vehicles with airproof shells and life support system, and (6) how to detect leaks and find leak positions efficiently. At the same time, some solutions are proposed.展开更多
The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different fac...The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.展开更多
Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible ...Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.展开更多
Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a ...Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a challenge for ETT mobile wireless communication to preserve steady link performance.Moreover,in such a special scenario,the wireless link between the base station and the passengers on the train needs to experience fading from both metal pipe and train,thus the free-wave coverage with antennas in traditional high-speed rail wireless communication systems is not suitable for ETT.Based on the characteristics of ETT,an improved architecture of wireless communication network is proposed,using distributed base stations with remote radio units(RRUs)and baseband units(BBUs)and leaky waveguides to form stable coverage.And a redundant BBUs or RRUs structure is designed for coverage enhancement.Based on this redundant architecture,a fast handover scheme is proposed to resolve the handover problem.The analytical and simulation results show that the proposed scheme is capable of reducing communication outage probability and handover failure probability remarkably.展开更多
The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet gui...The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.展开更多
文摘Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.
基金provided by National Natural Science Foundation of China (No.50678152)Scientific Plan Fund of Shaanxi Province (No.2009K09-24)
文摘Evacuated tube transportation (ETT) will be one of the ultra-large-scale vacuum application areas. This paper lists some key vacuum technology issues in ETT: (1) how to construct ultra-large-scale vacuum chamber with lower cost and high reliability, (2) how to evacuate gas out of the ETT tube in short time, (3) how to release heat or reduce temperature in the vacuum tube, (4) how to avoid vacuum discharge, (5) how to make vehicles with airproof shells and life support system, and (6) how to detect leaks and find leak positions efficiently. At the same time, some solutions are proposed.
基金supported by the National Natural Science Foundation of China (No. 50678152)the Scientific Plan Fund of Shaanxi Province(No. 2009K09-24)
文摘The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.
基金supported by the National Natural Science Foundation of China (No.50678152)the Scientific Plan Fund of Shaanxi Province (No.2009K09-24)
文摘Since Maglev vehicles will run in a closed vacuum tube,the layout of the terminal stations of evacuated tube transportation(ETT) will differ from the traditional railway stations.This paper deals with some possible station layouts of ETT,e.g.,a station with an airlock,a station without an airlock,above ground and underground stations,and stations with either level arrayed or rotation platforms.Then different station layouts are compared,and characteristics of each are analyzed.Finally,a more secure mode for ETT station layouts is suggested,which can be the basis for future ETT station layout and designs.
基金the fundamental Research Funds for Central Universities under Grant 2018JBZ102.
文摘Evacuated Tube Transportation(ETT)systems have been claimed to have considerable strengths,including ultra-highspeed,safety,and environmentally-friendly.However,the frequent handover caused by the high-speed brings a challenge for ETT mobile wireless communication to preserve steady link performance.Moreover,in such a special scenario,the wireless link between the base station and the passengers on the train needs to experience fading from both metal pipe and train,thus the free-wave coverage with antennas in traditional high-speed rail wireless communication systems is not suitable for ETT.Based on the characteristics of ETT,an improved architecture of wireless communication network is proposed,using distributed base stations with remote radio units(RRUs)and baseband units(BBUs)and leaky waveguides to form stable coverage.And a redundant BBUs or RRUs structure is designed for coverage enhancement.Based on this redundant architecture,a fast handover scheme is proposed to resolve the handover problem.The analytical and simulation results show that the proposed scheme is capable of reducing communication outage probability and handover failure probability remarkably.
基金support from the PCSIRT of the Ministry of Education of China(IRT0751)the National Natural Science Foundation of China (Grant Nos. 50588201, and 50872116)+3 种基金the National High Technology Research and Development Program of China (863 program: 2007AA03Z203)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities(SWJTU09BR152 and SWJTU09ZT24)the Doctoral Innovation Foundation of Southwest Jiaotong University (X1899124710003)
文摘The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.