Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s...Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.展开更多
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new...Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.展开更多
This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum o...This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.展开更多
The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receivin...The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.展开更多
Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the ef...Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.展开更多
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti...Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.展开更多
In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of d...In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.展开更多
5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intellige...5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intelligent equipment,intelligent operation and in other fields.In order to promote the standardized application of 5G technology in intelligent HSRs in a scientific and orderly manner and to avoid redundant construction and wasteful investment,it is imperative to carry out a systematical top-level design of the application scenarios at the initial stage.To this end,after investigating and analyzing the 5G application demands in different aspects of HSRs and the general structure of the railway 5G network,this paper formulates an overall planning of 5G technology application scenarios and proposes solutions to some typical application scenarios in the intelligent HSR system,based on the architecture and requirements of the intelligent HSR system.展开更多
In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional...In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional model is used to interpret the earthquake damage on buildings in the mega-earthquake area in order to acquire different-level house damage in the Kuzirun village disaster area. In addition,the characteristics of seismic damage on typical buildings are analyzed. The results show that the main collapsed houses in the mega-earthquake area are sand-stone buildings,of which about 39% are sand-stone buildings. Several brick-wood buildings and brick-concrete buildings are seriously damaged,while the buildings with frame structures are mainly slightly damaged,and the houses near the macro-epicenter of the earthquake are all in good conditions. Three-dimensional tilt photography technology can vividly display the scene of earthquake disaster,and can provide significant demonstration in building damage degree together with detailed analysis of disaster situation.展开更多
Foot ulcers are common complications of diabetes mellitus and substantially increase the morbidity and mortality due to this disease.Wound care by regular monitoring of the progress of healing with clinical review of ...Foot ulcers are common complications of diabetes mellitus and substantially increase the morbidity and mortality due to this disease.Wound care by regular monitoring of the progress of healing with clinical review of the ulcers,dressing changes,appropriate antibiotic therapy for infection and proper offloading of the ulcer are the cornerstones of the management of foot ulcers.Assessing the progress of foot ulcers can be a challenge for the clinician and patient due to logistic issues such as regular attendance in the clinic.Foot clinics are often busy and because of manpower issues,ulcer reviews can be delayed with detrimental effects on the healing as a result of a lack of appropriate and timely changes in management.Wound photographs have been historically useful to assess the progress of diabetic foot ulcers over the past few decades.Mobile phones with digital cameras have recently revolutionized the capture of foot ulcer images.Patients can send ulcer photographs to diabetes care professionals electronically for remote monitoring,largely avoiding the logistics of patient transport to clinics with a reduction on clinic pressures.Artificial intelligence-based technologies have been developed in recent years to improve this remote monitoring of diabetic foot ulcers with the use of mobile apps.This is expected to make a huge impact on diabetic foot ulcer care with further research and development of more accurate and scientific technologies in future.This clinical update review aims to compile evidence on this hot topic to empower clinicians with the latest developments in the field.展开更多
Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,pr...Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,providing a more scientific and macroscopic way of research.The key to refinement design is to refine the spatial design process and the spatial improvement strategy system.Taking the ancient city of Zhaoyu in Qixian County,Shanxi Province as an example,(1)based on obtaining the integrated data of the ancient city through the drone tilt photography,the style and landscape of the ancient city are modeled;(2)the point cloud data with spatial information is imported into the point cloud analysis platform and the data analysis is carried out from the overall macroscopic style of the ancient city to the refinement level,which results in the formation of a more intuitive landscape design scheme,thus improving the precision and practicability of the landscape design;(3)Based on spatial big data,it starts from the spatial aggregation level,spatial distribution characteristics and other evaluation index system to achieve the refinement analysis of the site.Digital technology and methods are used throughout the process to explore the refined design path.展开更多
基金Universiti Tun Hussein Onn Malaysia(UTHM)through Tier 1(Vot H936).
文摘Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62203468Young Elite Scientist Sponsorship Program by CAST under Grant 2022QNRC001+1 种基金Foundation of China State Railway Group Co.,Ltd.under Grant K2021X001Foundation of China Academy of Railway Sciences Corporation Limited under Grant 2021YJ315.
文摘Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.
文摘This is a review of high-speed train development in the sense of technology advances all over the world. Three generations of high-speed trains are classified according to their technical characteristics and maximum operating speed. Emphasis is given to the newly developed high-speed train in China, CRH380. The theoretical foundations and future development of CRH380 are briefly discussed.
基金Project of Science and Technology Research and Development Plan of China Railway Corporation(No.2013G010-D)Foundation of a Hundred Youth Talent Training Program of Lanzhou Jiaotong University
文摘The user signal quality as well as the performance of transmission link experiences severe loss due to wireless channel fading and propagation loss in high-speed railway scenario.To improve the quality at the receiving end,spatial diversity was realized by means of cooperative communication technology based on the uncorrelated characteristics of the channels.The model of mobile communication system in high-speed railway was set up,and a cooperative scheme based on statistics was proposed.Mathematical analysis and simulation results show that the quality of the received signal and the performance of the transmission link are significantly improved using cooperative communication technology compared to that in non-cooperative communication mode.
基金supported by the National Natural Science Foundation of China(Grant No.51479177).
文摘Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.
文摘Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.
基金This work was supported by National Natural Science Foundation of China ( No. 50875088) Natural Science Foundation of Guangdong Province, China ( No. 07006479).
文摘In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.
文摘5G technology is indispensable for developing comprehensive perception and ubiquitous interconnection of intelligent high-speed railways(HSRs),and can be applied to many scenarios in intelligent construction,intelligent equipment,intelligent operation and in other fields.In order to promote the standardized application of 5G technology in intelligent HSRs in a scientific and orderly manner and to avoid redundant construction and wasteful investment,it is imperative to carry out a systematical top-level design of the application scenarios at the initial stage.To this end,after investigating and analyzing the 5G application demands in different aspects of HSRs and the general structure of the railway 5G network,this paper formulates an overall planning of 5G technology application scenarios and proposes solutions to some typical application scenarios in the intelligent HSR system,based on the architecture and requirements of the intelligent HSR system.
基金sponsored by the National Key R&D Program(2017YFC150090501)Seismological Science and Technology Spark Program(XH20052)。
文摘In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional model is used to interpret the earthquake damage on buildings in the mega-earthquake area in order to acquire different-level house damage in the Kuzirun village disaster area. In addition,the characteristics of seismic damage on typical buildings are analyzed. The results show that the main collapsed houses in the mega-earthquake area are sand-stone buildings,of which about 39% are sand-stone buildings. Several brick-wood buildings and brick-concrete buildings are seriously damaged,while the buildings with frame structures are mainly slightly damaged,and the houses near the macro-epicenter of the earthquake are all in good conditions. Three-dimensional tilt photography technology can vividly display the scene of earthquake disaster,and can provide significant demonstration in building damage degree together with detailed analysis of disaster situation.
文摘Foot ulcers are common complications of diabetes mellitus and substantially increase the morbidity and mortality due to this disease.Wound care by regular monitoring of the progress of healing with clinical review of the ulcers,dressing changes,appropriate antibiotic therapy for infection and proper offloading of the ulcer are the cornerstones of the management of foot ulcers.Assessing the progress of foot ulcers can be a challenge for the clinician and patient due to logistic issues such as regular attendance in the clinic.Foot clinics are often busy and because of manpower issues,ulcer reviews can be delayed with detrimental effects on the healing as a result of a lack of appropriate and timely changes in management.Wound photographs have been historically useful to assess the progress of diabetic foot ulcers over the past few decades.Mobile phones with digital cameras have recently revolutionized the capture of foot ulcer images.Patients can send ulcer photographs to diabetes care professionals electronically for remote monitoring,largely avoiding the logistics of patient transport to clinics with a reduction on clinic pressures.Artificial intelligence-based technologies have been developed in recent years to improve this remote monitoring of diabetic foot ulcers with the use of mobile apps.This is expected to make a huge impact on diabetic foot ulcer care with further research and development of more accurate and scientific technologies in future.This clinical update review aims to compile evidence on this hot topic to empower clinicians with the latest developments in the field.
文摘Digital technology provides a method of quantitative investigation and data analysis for contemporary landscape spatial analysis,and related research is moving from image recognition to digital algorithmic analysis,providing a more scientific and macroscopic way of research.The key to refinement design is to refine the spatial design process and the spatial improvement strategy system.Taking the ancient city of Zhaoyu in Qixian County,Shanxi Province as an example,(1)based on obtaining the integrated data of the ancient city through the drone tilt photography,the style and landscape of the ancient city are modeled;(2)the point cloud data with spatial information is imported into the point cloud analysis platform and the data analysis is carried out from the overall macroscopic style of the ancient city to the refinement level,which results in the formation of a more intuitive landscape design scheme,thus improving the precision and practicability of the landscape design;(3)Based on spatial big data,it starts from the spatial aggregation level,spatial distribution characteristics and other evaluation index system to achieve the refinement analysis of the site.Digital technology and methods are used throughout the process to explore the refined design path.