The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, ...In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seapor...The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.展开更多
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H...High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.展开更多
Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation...Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.展开更多
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s...Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.展开更多
Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer on...Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar...Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. ...The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. In this paper, a new method was established to compute the equivalent stress amplitude to evaluate the fatigue damage based on the measurable randomness, since the equivalent stress is the key parameter for assessment of structure fatigue life and load derivation. The equivalent stress amplitude of a high-speed train welded bogie frame was found to obey normal distribution under uniform operation route that verified by on-track dynamic stress data, and the proposed model is, in effect, an improved version of the mathematical model used to calculate the equivalent stress amplitude. The data of a long-term, on-track dynamic stress test program was analyzed to find that the normal distribution parameters of equivalent stress amplitude values differ across different operation route. Thus, the fatigue damage of the high-speed train welded bogie frame can be evaluated by the proposed method if the running schedule of the train is known a priori. The results also showed that the equivalent stress amplitude of the region connected to the power system is more random than in other regions of the bogie frame.展开更多
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo...Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.展开更多
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t...Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.展开更多
In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis ch...In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.展开更多
Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti...Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.展开更多
The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relative...The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relatively unexplored. This study aims to determine the oil potential and the nature of the organic matter it contains. It focuses on the geochemical analysis (physicochemical method) of two oil wells located in the offshore sedimentary basin of Côte d’Ivoire, specifically in the Abidjan margin. A total of 154 cuttings samples from wells TMH-1X and TMH-2X were analyzed to determine their oil potential and the nature of the organic matter (OM) they contain. The analyses were performed using Rock-Eval pyrolysis, a method that characterizes the amount of hydrocarbons generated by the organic matter present in the rocks. The key parameters measured include Total Organic Carbon (TOC), Hydrogen Index (HI), oil potential (S2), and maximum pyrolysis temperature (Tmax). These parameters are used to assess the amount of organic matter, its thermal maturity, and its potential to generate hydrocarbons in the studied wells. The results show significant variations between different stratigraphic levels. In well TMH-1X, the Cenomanian and Campanian intervals stand out with very good quantities of organic matter (OM) with good oil potential, although often immature. In contrast, other stages such as the Albian and Turonian contain organic matter in moderate to low quantities, often immature and of continental type, which limits their capacity to generate hydrocarbons. In well TMH-2X, a similar trend is observed. Despite an abundance of organic matter, the oil potential remains low in most of the studied stages. The organic matter is primarily of type III (continental origin) and thermally immature, indicating a low potential for hydrocarbon generation. The study reveals that, although some intervals exhibit high-quality organic matter, the majority of the samples show insufficient maturity for effective hydrocarbon production. Wells TMH-1X and TMH-2X offer limited oil potential, requiring more advanced maturation conditions to fully exploit the hydrocarbon resources.展开更多
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g...When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.展开更多
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
文摘In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
文摘The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.
基金This work was financially supported by the Portuguese Foundation for Science and Technology(FCT)through the PhD scholarship PD/BD/143007/2018The authors would like also to acknowledge the financial support of the projects IN2TRACK2-Research into enhanced track and switch and crossing system 2 and IN2TRACK3-Research into optimised and future railway infrastructure funded by European funds through the H2020(SHIFT2RAIL Innovation Programme)and of the Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC).
文摘High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies.
基金funded by the National Railway Administration of the People’s Republic of China(No:N2023G001)Shaanxi Luyide Railroad and Bridge Technology Co.,Ltd.(No:W22L00520).
文摘Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
基金Universiti Tun Hussein Onn Malaysia(UTHM)through Tier 1(Vot H936).
文摘Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation.
基金supported by the Federal Railroad Administration (FRA)the National Academy of Science (NAS) IDEA program
文摘Railway inspection poses significant challenges due to the extensive use of various components in vast railway networks,especially in the case of high-speed railways.These networks demand high maintenance but offer only limited inspection windows.In response,this study focuses on developing a high-performance rail inspection system tailored for high-speed railways and railroads with constrained inspection timeframes.This system leverages the latest artificial intelligence advancements,incorporating YOLOv8 for detection.Our research introduces an efficient model inference pipeline based on a producer-consumer model,effectively utilizing parallel processing and concurrent computing to enhance performance.The deployment of this pipeline,implemented using C++,TensorRT,float16 quantization,and oneTBB,represents a significant departure from traditional sequential processing methods.The results are remarkable,showcasing a substantial increase in processing speed:from 38.93 Frames Per Second(FPS)to 281.06 FPS on a desktop system equipped with an Nvidia RTX A6000 GPU and from 19.50 FPS to 200.26 FPS on the Nvidia Jetson AGX Orin edge computing platform.This proposed framework has the potential to meet the real-time inspection requirements of high-speed railways.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported by the National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of the Shandong Province Government。
文摘Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFB1201704)National Natural Science Foundation of China(Major Program,Grant No.11790281)
文摘The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. In this paper, a new method was established to compute the equivalent stress amplitude to evaluate the fatigue damage based on the measurable randomness, since the equivalent stress is the key parameter for assessment of structure fatigue life and load derivation. The equivalent stress amplitude of a high-speed train welded bogie frame was found to obey normal distribution under uniform operation route that verified by on-track dynamic stress data, and the proposed model is, in effect, an improved version of the mathematical model used to calculate the equivalent stress amplitude. The data of a long-term, on-track dynamic stress test program was analyzed to find that the normal distribution parameters of equivalent stress amplitude values differ across different operation route. Thus, the fatigue damage of the high-speed train welded bogie frame can be evaluated by the proposed method if the running schedule of the train is known a priori. The results also showed that the equivalent stress amplitude of the region connected to the power system is more random than in other regions of the bogie frame.
基金supported by the National Natural Science Foundation of China[U2268217].
文摘Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.
基金support from National Key Research and Development Program of China(2021YFC2103701)the National Postdoctoral Program of China(GZB20230630)the National Natural Science Foundation of China(22208295).
文摘Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.
基金supported by the National Key Research and Development Program of China(2019YFC1906700)the Natural Science Foundation of Sichuan,China(2022NSFSC0308).
文摘In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.
基金supported by the National Natural Science Foundation of China(No.52122407)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3048)the Key Research and Development Program of Yunnan Province,China(No.202103AA080019).
文摘Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.
文摘The Albian-Maastrichtian interval of the Ivorian sedimentary basin has been the subject of numerous sedimentological, biostratigraphic, and geophysical studies. However, its geochemical characteristics remain relatively unexplored. This study aims to determine the oil potential and the nature of the organic matter it contains. It focuses on the geochemical analysis (physicochemical method) of two oil wells located in the offshore sedimentary basin of Côte d’Ivoire, specifically in the Abidjan margin. A total of 154 cuttings samples from wells TMH-1X and TMH-2X were analyzed to determine their oil potential and the nature of the organic matter (OM) they contain. The analyses were performed using Rock-Eval pyrolysis, a method that characterizes the amount of hydrocarbons generated by the organic matter present in the rocks. The key parameters measured include Total Organic Carbon (TOC), Hydrogen Index (HI), oil potential (S2), and maximum pyrolysis temperature (Tmax). These parameters are used to assess the amount of organic matter, its thermal maturity, and its potential to generate hydrocarbons in the studied wells. The results show significant variations between different stratigraphic levels. In well TMH-1X, the Cenomanian and Campanian intervals stand out with very good quantities of organic matter (OM) with good oil potential, although often immature. In contrast, other stages such as the Albian and Turonian contain organic matter in moderate to low quantities, often immature and of continental type, which limits their capacity to generate hydrocarbons. In well TMH-2X, a similar trend is observed. Despite an abundance of organic matter, the oil potential remains low in most of the studied stages. The organic matter is primarily of type III (continental origin) and thermally immature, indicating a low potential for hydrocarbon generation. The study reveals that, although some intervals exhibit high-quality organic matter, the majority of the samples show insufficient maturity for effective hydrocarbon production. Wells TMH-1X and TMH-2X offer limited oil potential, requiring more advanced maturation conditions to fully exploit the hydrocarbon resources.
基金Basic research program of Shanxi Province(20210302124136 and 20210302123177)National Key R&D Program of China(2019YFA0705501)+1 种基金Key R&D and promotion projects in Henan Province(212102310010)National Natural Science Foundation of China(52104144,U23B2088).
文摘When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.