期刊文献+
共找到41,149篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
1
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 high-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
2
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 high-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
3
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 high-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
A review of artificial intelligence applications in high-speed railway systems 被引量:2
4
作者 Xuehan Li Minghao Zhu +3 位作者 Boyang Zhang Xiaoxuan Wang Zha Liu Liang Han 《High-Speed Railway》 2024年第1期11-16,共6页
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e... In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions. 展开更多
关键词 high-speed railway Artificial intelligence Intelligent distribution Intelligent control Intelligent scheduling
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
5
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 high-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
6
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 high-speed load model Dynamic analysis high-speed railways Train signature Railway bridges Deck acceleration
下载PDF
Numerical investigation of friction-heating-pressurization and its control parameters in the shear band of high-speed landslides
7
作者 ZHAO Nenghao CUI Shenghua LU Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3380-3395,共16页
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat... High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding. 展开更多
关键词 high-speed landslide Shear band Friction-heating-pressurization Numerical investigation
下载PDF
Numerical investigation on the aerodynamic drag reduction based on bottom deflectors and streamlined bogies of a high-speed train
8
作者 JIANG Chen LONG jn-lan +2 位作者 LI Yan-ong GAO Guang-jun FRANKLIN Eze 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3312-3328,共17页
The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In th... The complex structure of the bottom of a high-speed train is an important source of train aerodynamic drag.Thus,improving the bottom structure is of great significance to reduce the aerodynamic drag of the train.In this study,computational fluid dynamics(CFD)based on three-dimensional steady incompressible Reynolds-average Naiver-Stokes(RANS)equations and Realizable k-ε turbulence model were utilized for numerical simulations.Inspired by the concept of streamlined design and the idea of bottom flow field control,this study iteratively designed the bogies in a streamlined shape and combined them with the bottom deflectors to investigate the joint drag reduction mechanism.Three models,i.e.,single-bogie model,simplified train model,and eight-car high-speed train model,were created and their aerodynamic characteristics were analyzed.The results show that the single-bogie model with streamlined design shows a noticeable drag reduction,whose power bogie and trailer bogie experience 13.92%and 7.63%drag reduction,respectively.The range of positive pressure area on the bogie is reduced.The aerodynamic drag can be further reduced to 15.01%by installing both the streamlined bogie and the deflector on the simplified train model.When the streamlined bogies and deflectors are used on the eight-car model together,the total drag reduction rate reaches 2.90%.Therefore,the proposed aerodynamic kit for the high-speed train bottom is capable to improve the flow structure around the bogie regions,reduce the bottom flow velocity,and narrow the scope of the train’s influence on the surrounding environment,achieving the appreciable reduction of aerodynamic drag.This paper can provide a new idea for the drag reduction of high-speed trains. 展开更多
关键词 high-speed train numerical simulation drag reduction DEFLECTOR streamlined design
下载PDF
Dynamic analysis of axle box bearings on the high-speed train caused by wheel-rail excitation
9
作者 Qiaoying MA Shaopu YANG +2 位作者 Yongqiang LIU Baosen WANG Zechao LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期441-460,共20页
To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response charact... To explore the impact of wheel-rail excitation on the dynamic performance of axle box bearings,a dynamic model of the high-speed train including axle box bearings is developed.Subsequently,the dynamic response characteristics of the axle box bearing are examined.The investigation focuses on the acceleration characteristics of bearing vibration under excitation of track irregularities and wheel flats.In addition,experiments on both normal and faulty bearings are conducted separately,and the correctness of the model and some conclusions are verified.According to the research,track irregularity is unfavorable for bearing fault detection based on resonance demodulation.Under the same speed conditions,the acceleration peak of bearing is inversely proportional to the length of the wheel flat and directly proportional to its depth.The paper will contribute to a deeper understanding of the dynamic performance of axle box bearings. 展开更多
关键词 high-speed train track irregularity wheel flat dynamic simulation
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
10
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 high-speed train GEARBOX Bench test Vibration behavior Modal identification
下载PDF
Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds
11
作者 Zun-Di Huang Zhen-Bin Zhou +2 位作者 Ning Chang Zheng-Wei Chen Su-Mei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期975-996,共22页
The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(ID... The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics.Therefore,this paper uses an improved delayed detached eddy simulation(IDDES)method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds.The effects of marshaling lengths(varying from 3-car to 8-car groups)on the train’s aerodynamic performance,surface pressure,and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes(N-S)equations.The results showed that the marshaling lengths had minimal influence on the aerodynamic performance of the head and middle cars.Conversely,the marshaling lengths are negatively correlated with the time-average side force coefficient(CS)and time-average lift force coefficient(Cl)of the tail car.Compared to the tail car of the 3-car groups,the CS and Cl fell by 27.77%and 18.29%,respectively,for the tail car of the 8-car groups.It is essential to pay more attention to the operational safety of the head car,as it exhibits the highest time average CS.Additionally,the mean pressure difference between the two sides of the tail car body increased with the marshaling lengths,and the side force direction on the tail car was opposite to that of the head and middle cars.Furthermore,the turbulent kinetic energy of the wake structure on the windward side quickly decreased as marshaling lengths increased. 展开更多
关键词 high-speed maglev train marshaling lengths crosswinds aerodynamic features
下载PDF
Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes
12
作者 NIE Yu-tao GUO Wei +8 位作者 JIANG Li-zhong YU Zhi-wu ZENG Chen WANG Yang HE Xu-en REN Shao-xun HUANG Ren-qiang LIANG Guang-yue LI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2102-2115,共14页
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper... Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation. 展开更多
关键词 pier height high-speed railway bridge running safety numerical model
下载PDF
Advancing high-speed train gearbox durability:enhanced bearing load and contact stress through transition from helical to herringbone gears
13
作者 Hao Wu Jing Wei +2 位作者 Pingbo Wu Fansong Li Yayun Qi 《Railway Engineering Science》 EI 2024年第4期461-479,共19页
High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es... High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life. 展开更多
关键词 high-speed train Herringbone gear Helical gear Gearbox bearings Contact stress
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
14
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 high-speed partial flow pump orthogonal test optimal design numerical calculation
下载PDF
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake
15
作者 Lin Xuchuan Liu Fuxiang Shan Wenchen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1043-1055,共13页
The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ... The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas. 展开更多
关键词 Menyuan earthquake field survey high-speed railway bridge near fault seismic damage
下载PDF
Development of track geometry inspection equipment for high-speed comprehensive inspection train in China
16
作者 Yan Wang Shibin Wei +2 位作者 Fei Yang Jiyou Fei Jianfeng Guo 《Railway Sciences》 2024年第6期673-683,共11页
Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometr... Purpose–This study aims to analyze the development direction of track geometry inspection equipment for high-speed comprehensive inspection train in China.Design/methodology/approach–The development of track geometry inspection equipment for highspeed comprehensive inspection train in China in the past 20 years can be divided into 3 stages.Track geometry inspection equipment 1.0 is the stage of analog signal.At the stage 1.0,the first priority is to meet the China’s railways basic needs of pre-operation joint debugging,safety assessment and daily dynamic inspection,maintenance and repair after operation.Track geometry inspection equipment 2.0 is the stage of digital signal.At the stage 2.0,it is important to improve stability and reliability of track geometry inspection equipment by upgrading the hardware sensors and improving software architecture.Track geometry inspection equipment 3.0 is the stage of lightweight.At the stage 3.0,miniaturization,low power consumption,self-running and green economy are co-developing on demand.Findings–The ability of track geometry inspection equipment for high-speed comprehensive inspection train will be expanded.The dynamic inspection of track stiffness changes will be studied under loaded and unloaded conditions in response to the track local settlement,track plate detachment and cushion plate failure.The dynamic measurement method of rail surface slope and vertical curve radius will be proposed,to reveal the changes in railway profile parameters of high-speed railways and the relationship between railway profile,track irregularity and subsidence of subgrade and bridges.The 200 m cut-off wavelength of track regularity will be researched to adapt to the operating speed of 400 km/h.Originality/value–The research can provide new connotations and requirements of track geometry inspection equipment for high-speed comprehensive inspection train in the new railway stage. 展开更多
关键词 Track geometry inspection equipment high-speed comprehensive inspection Potential tapping requirements and technological direction high-speed railway
下载PDF
Noise reduction mechanism of high-speed railway box-girder bridges installed with MTMDs on top plate
17
作者 Xiaoan Zhang Xiaoyun Zhang +2 位作者 Jianjin Yang Li Yang Guangtian Shi 《Railway Engineering Science》 EI 2024年第4期518-532,共15页
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can... The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate. 展开更多
关键词 high-speed railway Box-girder bridge MTMDs Noise control design Noise reduction mechanism
下载PDF
Experimental study on the acoustic roughness spectrum of high-speed railway rails
18
作者 Li Han Xiangyang Wu +2 位作者 Qing Yu Lanhua Liu Chenge Wang 《Railway Sciences》 2024年第6期704-716,共13页
Purpose–This study aims to investigate the acoustic roughness of rails on China’s high-speed railways,with a focus on short-wavelength irregularities(less than 80 cm),which are known to significantly contribute to n... Purpose–This study aims to investigate the acoustic roughness of rails on China’s high-speed railways,with a focus on short-wavelength irregularities(less than 80 cm),which are known to significantly contribute to noise.The goal is to develop a specific acoustic roughness spectrum tailored for China’s high-speed railway system,as no such spectrum currently exists.Design/methodology/approach–A long-term tracking study was conducted on major railway lines in China,monitoring rail roughness throughout the initial operational period and the rails’service life.Data preprocessing techniques such as peak removal and curvature correction were applied for acoustic adjustments.A spatial-wavelength domain transformation was performed,providing the distribution patterns and statistical characteristics of acoustic roughness on China’s high-speed rails.Based on these analyses,a model for constructing the acoustic roughness spectrum was developed.Findings–The study found that the acoustic roughness of China’s high-speed railway rails follows aχ2 distribution with six degrees of freedom.For wavelengths greater than 8 cm,the acoustic roughness spectrum remains below the ISO specified limits.In the wavelength range of 3.2 cm to 6.3 cm,the roughness is comparable to or within the limits specified by ISO 3095:2005 and ISO 3095:2013.However,for wavelengths shorter than 2.5 cm,the roughness exceeds ISO limits.Originality/value–This research fills the gap in the lack of a specific acoustic roughness spectrum for China’s high-speed railways.By establishing a tailored spectrum based on long-term data analysis,the findings provide valuable insights for noise control and rail maintenance in the context of China’s high-speed rail system. 展开更多
关键词 high-speed railway RAIL Acoustic roughness Short-wavelength irregularity
下载PDF
Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability
19
作者 Heng Zhang Liang Ling +1 位作者 Sebastian Stichel Wanming Zhai 《Railway Engineering Science》 EI 2024年第3期324-343,共20页
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ... Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated. 展开更多
关键词 high-speed train Hunting stability Bio-inspired limb-like structure Motor suspension Nonlinear damping
下载PDF
Reflection on methodology of the correlation between electromagnetic interference and safety in high-speed railway
20
作者 Chang Liu Shiwu Yang +2 位作者 Yixuan Yang Hefei Cao Shanghe Liu 《Railway Sciences》 2024年第1期84-96,共13页
Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation... Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed. 展开更多
关键词 Electromagnetic interference Reliability SAFETY Risk assessment Signaling system high-speed railway
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部