The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the gen...The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.展开更多
To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active...To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.展开更多
Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative posit...Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.展开更多
With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components ...With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.展开更多
A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe th...A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.展开更多
According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high sp...According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.展开更多
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl...In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.展开更多
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane de...An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability(RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.展开更多
The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze ...The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze the characteristics of fault arc based on magnetic-hydrodynamic (MHD) theory. The advantage of such a model is that the thermal transfer coefficient can be determined by depending on the numerical method alone. The influence of net emission coefficients (NEC) radiation model and P1 model on fault arc is analyzed in detail. Results show that NEC model predicts more radiation energy and less pressure rise without the re-absorption effect considered. As a consequence, P1 model is more suitable to calculate the pressure rise caused by fault arc. Finally, the pressure rise during longer arcing time for different arc currents is predicted.展开更多
Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dyn...Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.展开更多
Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems res...Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.展开更多
Predicting and optimizing of the high-speed solenoid on/off valve behaviorrequires an accurate model of the hysteresis loop of the magnetic material used A ferromagnetichysteresis model and a novel algorithm based on ...Predicting and optimizing of the high-speed solenoid on/off valve behaviorrequires an accurate model of the hysteresis loop of the magnetic material used A ferromagnetichysteresis model and a novel algorithm based on fixed-point technique to optimize theelectromagnetic model are introduced By utilizing a modified vector Preisach model of magnetichysteresis and the global genetic optimization algorithm based on partial mapping cross method, theB-H relation loops are identified accurately.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52005441)Young Elite Scientist Sponsorship Program by CAST of China (Grant No.2022-2024QNRC001)+4 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ21E050017)Zhejiang Provincial“Pioneer”and“Leading Goose”R&D Program of China (Grant Nos.2022C01122,2022C01132)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202316)Fundamental Research Funds for the Provincial Universities of Zhejiang of China (Grant No.RF-A2023007)Research Project of ZJUT of China (Grant No.GYY-ZH-2023075)。
文摘The high-speed on/off valve(HSV)serves as the fundamental component responsible for generating discrete fluids within digital hydraulic systems.As the switching frequency of the HSV increases,the properties of the generated discrete fluid approach those of continuous fluids.Therefore,a higher frequency response characteristic of HSV is the key to ensure the control accuracy of digital hydraulic systems.However,the current research mainly focuses on its dynamic performance,but neglect its FRC.This paper presents a theoretical analysis demonstrating that the FRC of the HSV can be enhanced by minimizing its switching time.The maximum switching frequency(MSF)is mainly determined by opening dynamic performance when HSV operates with low switching duty ratio(SDR),whereas the closing dynamic performance limits the MSF when HSV operates with high SDR.Building upon these findings,the pre-excitation control algorithm(PECA)is proposed to reduce the switching time of the HSV,and consequently enhance its FRC.Experimental results demonstrate that PECA shortens the opening delay time of HSV by 1.12 ms,the closing delay time by 2.54 ms,and the closing moving time by 0.47 ms in comparison to the existing advanced control algorithms.As a result,a larger MSF of 417 Hz and a wider controllable SDR range from 20%to 70%were achieved at a switching frequency of 250 Hz.Thus,the proposed PFCA in this paper has been verified as an effective and promising approach for enhancing the control performance of digital hydraulic systems.
基金Aeronautical Science Foundation of China (04B52012, 98B52023)
文摘To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (Grant Nos.2022YJ177 and 2022YJ088).
文摘Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.
基金Supported by Key Technologies Research and Development Program of China(Grant No.2019YFB2004502)National Natural Science Foundation of China(Grant Nos.51805350,51775362)Postdoctoral Science Foundation of China(Grant No.2019M651073).
文摘With the widespread application of the computer and microelectronic technology in the industry,digitization becomes the inevitable developing trend of the hydraulic technology.Digitization of the hydraulic components is critical in the digital hydraulic technology.High-speed on-of valves(HSVs)which convert a train of input pulses into the fast and accurate switching between the on and of states belong to widely used basic digital hydraulic elements.In some ways,the characteristics of the HSVs determine the performance of the digital hydraulic systems.This paper discusses the development of HSVs and their applications.First,the HSVs with innovative structures which is classifed into direct drive valves and pilot operated valves are discussed,with the emphasis on their performance.Then,an overview of HSVs with intelligent materials is presented with considering of the switching frequency and fow capacity.Finally,the applications of the HSVs are reviewed,including digital hydraulic components with the integration of the HSVs and digital hydraulic systems controlled by the HSVs.
基金Project supported by the Doctoral Fund of Ministry of Education of China (No. 20070335133)the Educational Commission of Zhejiang Province (No. 20070057), China
文摘A novel ε-type solenoid actuator is proposed to improve the dynamic response of electro-pneumatic ejector valves by reducing moving mass weight. A finite element analysis (FEA) model has been developed to describe the static and dynamic operations of the valves. Compared with a conventional E-type actuator, the proposed ε-type actuator reduced the moving mass weight by almost 65% without significant loss of solenoid force, and reduced the response time (RT) typically by 20%. Prototype valves were designed and fabricated based on the proposed ε-type actuator model. An experimental setup was also established to investigate the dynamic characteristics of valves. The experimental results of the dynamics of valves agreed well with simulations, indicating the validity of the FEA model.
文摘According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005441,51890885)open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906)+1 种基金Zhejiang Province Natural Science Foundation of China(Grant No.LQ21E050017)China Postdoctoral Science Foundation(Grant Nos.2021M692777,2021T140594).
文摘In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.
基金Supported by the National Special Fund for Major Research Instrumentation Development(No.2012YQ090229)the Instrument Functional Exploitation and Technical Innovation Fund,Chinese Academy of Sciences(No.yg2010072)the Shandong Provincial Technology Development Plan Fund(Nos.2011SJGZ06,2012SJGZ12,2012424012)
文摘An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability(RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.
基金supported by National Key Basic Research Program of China(973 Program)(No.2015CB251001)National Natural Science Foundation of China(Nos.51221005,51177124,51377128,51323012)+1 种基金the Science and Technology Project Funds of the Grid State Corporation SGSNKYOOKJJS1501564Shaanxi Province Natural Science Foundation of China(No.2013JM-7010)
文摘The behavior of fault arc in a high-speed switch (HSS) has been studied theoretically and experimentally. A simplified HSS setup is designed to support this work. A two-dimensional arc model is developed to analyze the characteristics of fault arc based on magnetic-hydrodynamic (MHD) theory. The advantage of such a model is that the thermal transfer coefficient can be determined by depending on the numerical method alone. The influence of net emission coefficients (NEC) radiation model and P1 model on fault arc is analyzed in detail. Results show that NEC model predicts more radiation energy and less pressure rise without the re-absorption effect considered. As a consequence, P1 model is more suitable to calculate the pressure rise caused by fault arc. Finally, the pressure rise during longer arcing time for different arc currents is predicted.
基金the key project of the National Science and Technology Major Project(Grant No.2018ZX03001017)the project of the CAS engineering laboratory for intelligent agricultural machinery equipment(Grant No.GC201907-02).
文摘Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.
文摘Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.
文摘Predicting and optimizing of the high-speed solenoid on/off valve behaviorrequires an accurate model of the hysteresis loop of the magnetic material used A ferromagnetichysteresis model and a novel algorithm based on fixed-point technique to optimize theelectromagnetic model are introduced By utilizing a modified vector Preisach model of magnetichysteresis and the global genetic optimization algorithm based on partial mapping cross method, theB-H relation loops are identified accurately.