期刊文献+
共找到1,188篇文章
< 1 2 60 >
每页显示 20 50 100
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
1
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 high-speed train GEARBOX Bench test vibration behavior Modal identification
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
2
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 high-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Health Monitoring of Milling Tool Inserts Using CNN Architectures Trained by Vibration Spectrograms 被引量:1
3
作者 Sonali S.Patil Sujit S.Pardeshi Abhishek D.Patange 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期177-199,共23页
In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t... In-process damage to a cutting tool degrades the surface􀀀nish of the job shaped by machining and causes a signi􀀀cant􀀀nancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty con􀀀gurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results. 展开更多
关键词 milling tool inserts health monitoring vibration spectrograms deep learning convolutional neural network
下载PDF
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
4
作者 Guanhui Ren Sai Guo Bi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期65-79,共15页
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp... This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting. 展开更多
关键词 Surface integrity Inconel 738LC Selective laser melting high-speed milling
下载PDF
Prediction of high-speed train induced ground vibration based on train-track-ground system model 被引量:27
5
作者 Zhai Wanming He Zhenxing Song Xiaolin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期545-554,共10页
The development of analysis on train-induced ground vibration is briefly summarized. A train-track- ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trai... The development of analysis on train-induced ground vibration is briefly summarized. A train-track- ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trains. Representative dynamic responses of the train-track-ground system predicted by the model are presented. Some major results measured from two field tests on the ground vibration induced by two high-speed trains are reported. Numerical prediction with the proposed train-track-ground model is validated by the high-speed train running experiments. Research results show that the wheel/rail dynamic interaction caused by track irregularities has a significant influence on the ground acceleration and little influence on the ground displacement. The main frequencies of the ground vibration induced by high-speed trains are usually below 80 Hz. Compared with the ballasted track, the ballastless track structure can produce much larger train-induced ground vibration at frequencies above 40 Hz. The vertical ground vibration is much larger than the lateral and longitudinal components. 展开更多
关键词 high-speed railway ground vibration dynamic model SIMULATION field experiment
下载PDF
Active Damping of Milling Vibration Using Operational Amplifier Circuit 被引量:3
6
作者 Bashir Bala Muhammad Min Wan +1 位作者 Yang Liu Heng Yuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期58-65,共8页
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great... The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel. 展开更多
关键词 Active damping ANTI-WINDUP Bending moment milling process Workpiece vibration Operational amplifier Proportional integral controller
下载PDF
Extraction Fuzzy Linguistic Rules from Neural Networks for Maximizing Tool Life in High-speed Milling Process 被引量:2
7
作者 SHEN Zhigang HE Ning LI Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期341-346,共6页
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ... In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s. 展开更多
关键词 high-speed milling rule extraction neural network fuzzy logic
下载PDF
Vibration and acoustic radiation of bogie area under random excitation in high-speed trains 被引量:3
8
作者 Dongzhen Wang Jianmin Ge 《Journal of Modern Transportation》 2019年第2期120-128,共9页
Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. ... Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. Firstly, combined with line tests, a vehicle body with a length of 7 m was used as the research object. By comparing the results of experiment and simulation, the accuracy of the finite element model was verified. Secondly, the power spectral density curves at typical measuring points in bogie area were obtained by processing and calculating the line test data, which was measured when the vehicle ran at high speeds, and the standard vibration spectrum of the bogie area was obtained by the extreme envelope method. Furthermore, the random vibration test and simulation prediction analysis of the real vehicle structure were carried out to further verify the accuracy of the noise and vibration prediction model. Finally, according to the vibration and acoustic radiation theory, the indirect boundary element method was adopted to predict the acoustic response of the real vehicle. The analysis shows that the simulated power spectral density curves of acceleration and sound pressure level are highly consistent with the experimental ones, and the error between the simulated prediction and the experimental result is within the allowable range of 3 dB. 展开更多
关键词 high-speed TRAINS Standard vibration spectrum Indirect BOUNDARY element method RANDOM EXCITATION Acoustic radiation
下载PDF
Investigation of Surface Roughness in High-Speed Milling of Aeronautical Aluminum Alloy 被引量:1
9
作者 潘永智 艾兴 +1 位作者 赵军 万熠 《Journal of Beijing Institute of Technology》 EI CAS 2008年第1期20-24,共5页
An approach is presented to optimize the surface roughness in high-speed finish milling of 7050- T7451 aeronautical aluminum alloy. In view of this, the multi-linear regression model for surface roughness has been dev... An approach is presented to optimize the surface roughness in high-speed finish milling of 7050- T7451 aeronautical aluminum alloy. In view of this, the multi-linear regression model for surface roughness has been developed in terms of slenderness ratio, cutting speed, radial depth-of-cut and feed per tooth by means of orthogonal experimental design. Variance analyses were applied to check the adequacy of the predictive model and the significances of the independent input parameters. Response contours of surface roughness were generated by using response surface methodology (RSM). From these contours, it was possible to select an optimum combination of cutting parameters that improves machining efficiency without increasing the surface roughness. 展开更多
关键词 surface roughness response surface methodology multi-linear regression high-speed milling
下载PDF
Influence of High-Speed Milling Process on Mechanical and Microstructural Properties of Ultrafine Grained Profiles Produced by Linear Flow Splitting 被引量:1
10
作者 Abele Eberhard Müller Clemens +3 位作者 Turan Emrah Niehuesbernd Joern Bruder Enrico Falk Florian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期349-356,共8页
The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting spee... The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls. 展开更多
关键词 high-speed milling ultrafine grained microstructure linear flow splitting HARDNESS
下载PDF
Investigation into rail corrugation in high-speed railway tracks from the viewpoint of the frictional self-excited vibration of a wheel–rail system 被引量:1
11
作者 G.X.Chen X.L.Cui W.J.Qian 《Journal of Modern Transportation》 2016年第2期124-131,共8页
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the... A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks. 展开更多
关键词 Rail corrugation WEAR Friction-induced vibration Self-excited vibration - Elastic vibration mode Wheel-rail system high-speed railway
下载PDF
Characteristics of wheel-rail vibration of the vertical section in high-speed railways 被引量:2
12
作者 Jiuchuan YANG Kaiyun WANG Hongyu CHEN 《Journal of Modern Transportation》 2012年第1期10-15,共6页
In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, th... In order to analyze the characteristics of wheel-rail vibration of the vertical section in a high-speed railway, a vehicle-line dynamics model is established using the dynamics software SIMPACK. Through this model, the paper analyzes the influence of vertical section parameters, including vertical section slope and vertical curve radius, on wheel-rail dynamics interaction and the acting region of wheel-rail vibration. In addition, the characteristics of wheel- rail vibration of the vertical section under different velocities are investigated. The results show that the variation of wheel load is not sensitive to the vertical section slope but is greatly affected by the vertical curve radius. It was also observed that the smaller the vertical curve radius is, the more severe the interaction between the wheel and rail be- comes. Furthermore, the acting region of wheel-rail vibration expands with the vertical curve radius increasing. On another note, it is necessary to match the slope and vertical curve radius reasonably, on account of the influence of operation speed on the characteristics of wheel-rail vibration. This is especially important at the design stage of vertical sec- tions for lines of different grades. 展开更多
关键词 high-speed railway vertical section wheel-rail vibration SLOPE vertical curve radius
下载PDF
Theoretical analysis on ground vibration attenuation using sub-track asphalt layer in high-speed rails 被引量:2
13
作者 Mingjing Fang Sergio Fernández Cerdas 《Journal of Modern Transportation》 2015年第3期214-219,共6页
Using a finite element method (FEM) program, a Portland cement concrete slab trackbed (So), and a sub- track asphalt roadbed (RAC-S) were modeled under high- speed train loads to analyze their responses to groun... Using a finite element method (FEM) program, a Portland cement concrete slab trackbed (So), and a sub- track asphalt roadbed (RAC-S) were modeled under high- speed train loads to analyze their responses to ground vibration attenuation, by considering 10, 15, 20, 25, and 30 thick sub-track asphalt layer replaced on the top of the upper subgrade. FEM results show that the vibration amplitude of RAC-S is at least three times lower than the vibration for So. The maximum vibration amplitude of RAC-S is linearly increased with train speed. The vertical acceleration is found to be reduced by more than 10 % when the asphalt layer thickness is increased from 10 to 20 cm. However, the reduction in vertical acceleration is only about 1% when the thickness of the asphalt layer changes from 20 to 30 cm. The vibration level is slightly lower if the asphalt layer has higher resilient modulus in the seasons of autumn or winter. This theoretical analysis indicates that a railway substructure that consists of a 10-20 cm thick high modulus asphalt layer located at the top of trackbed shows a good performance in ground vibration control for high-speed rails. 展开更多
关键词 high-speed railway· Substructure · TrackbedAsphalt mix· Ground vibration attenuation ·Mechanismanalysis
下载PDF
Research on cutting vibration characteristics of face-milling involute gear 被引量:1
14
作者 Cheng-zhe JIN Chang GUO Yun GAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第5期380-384,共5页
Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain ext... Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain extent. This article proposes to utilize a face-milling machining method in involute gear machining, which can be used to reduce production cost effectively. Cutting vibration generated during cutting machining has a direct effect on the machining accuracy and machined surface quality of workpiece. Therefore, it is desiderated to perform in-depth research regarding this issue. ADAMS software was used to establish a rigid-flexible coupling virtual prototyping model of face-milling gear milling system and a cutting vibration system model. Cutting vibration analysis was performed for face-milling gear by adopting quick sine frequency sweep method, so that the frequency response characteristics of workpiece in three directions X, Y and Z and space were acquired. The research results will provide reference and theoretical foundation for actual application of face-milling gear machining technology. 展开更多
关键词 GEAR Face-milling vibration ADAMS
下载PDF
Effect of Radial Depth on Vibration and Surface Roughness During Face Milling of Austenitic Stainless Steel 被引量:1
15
作者 申阳 陈永洁 +7 位作者 张俐 方海涛 庞佳 刘敏 王社权 马晓魁 张京 刘志林 《Transactions of Tianjin University》 EI CAS 2011年第5期336-339,共4页
This paper studies the influence of radial depth on vibration, chip formation and surface roughness during face milling of AISI304 austenitic stainless steel with indexable cemented carbide milling cutters. The amplit... This paper studies the influence of radial depth on vibration, chip formation and surface roughness during face milling of AISI304 austenitic stainless steel with indexable cemented carbide milling cutters. The amplitude of vibration acceleration increased with the increasing radial depth up to 80 mm. And the domain vibration frequency varied with the radial depth. In this paper, three types of chips were found: C shape, long shape and spiral shape. The minimum surface roughness value occurred when the radial depth equalled 40 mm in the experiment. Irregular changes of chip curl radius and chip thickness could be attributed to different numbers of alternately engaged teeth when the feed and speed were fixed. Surface roughness is related to forced vibration and chip formation. Radial depth with different numbers of alternately engaged teeth could significantly influence the forced vibration, chip formation, and surface roughness. 展开更多
关键词 表面粗糙度值 振动加速度 奥氏体不锈钢 径向 铣削 硬质合金铣刀 振动频率 电话号码
下载PDF
Research on Surface Roughness of Supersonic Vibration Auxiliary Side Milling for Titanium Alloy
16
作者 Xuetao Wei Caixu Yue +3 位作者 Desheng Hu Xianli Liu Yunpeng Ding Steven Y.Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期100-111,共12页
The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite el... The processed surface contour shape is extracted with the finite element simulation software.The difference value of contour shape change is used as the parameters of balancing surface roughness to construct finite element model of supersonic vibration milling in cutting stability domain.The surface roughness trial scheme is designed in the orthogonal test design method to analyze the surface roughness test result in the response surface methodology.The surface roughness prediction model is established and optimized.Finally,the surface roughness finite element simulation prediction model is verified by experiments.The research results show that,compared with the experiment results,the error range of the finite element simulation model is 27.5%–30.9%,and the error range of the empirical model obtained by the response surface method is between 4.4%and 12.3%.So,the model in this paper is accurate and will provide the theoretical basis for the optimization study of the auxiliary milling process of supersonic vibration. 展开更多
关键词 Side milling Axial vibration Ultrasonic milling Finite element simulation Linear regression Surface roughness
下载PDF
Application of On-Line Rail Milling in Rail Maintenance of High-Speed Railways
17
作者 周宇 许玉德 +1 位作者 李海锋 曹亮 《Journal of Southwest Jiaotong University(English Edition)》 2010年第2期140-144,共5页
On-line rail milling technologies have been applied in rail maintenance, and are proving to be efficient and environmental friendly. Based on the field data of on-line rail milling, a program for comparing rail transv... On-line rail milling technologies have been applied in rail maintenance, and are proving to be efficient and environmental friendly. Based on the field data of on-line rail milling, a program for comparing rail transverse profiles before and after milling was designed and the root mean square (RMS) amplitude of longitudinal profile was calculated. The application of on-line rail milling technology in removing rail surface defects, re-profiling railhead transverse profiles, smoothing longitudinal profiles and improving welding joint irregularity were analyzed. The results showed that the on-line rail milling technology can remove the surface defects at the rail crown and gauge comer perfectly, re-profile railhead transverse profile with a tolerance of - 1. 0-0.2 ram, improve longitudinal irregularity of rail surface, with the RMS amplitude of irregularity reduced more than 50% and the number of out-of- limited amplitude reduced by 42% - 82% in all wavelength ranges. The improvement of welding joint irregularity depends on the amount of metal removal determined by the milling equipment and the primal amplitude. 展开更多
关键词 high-speed railway RAIL Rail maintenance Rail defects Rail profile milling
下载PDF
Real Time Chatter Vibration Control System in High Speed Milling
18
作者 Hyeok Kim Mun-Ho Cho +2 位作者 Jun-Yeong Koo Jong-Whan Lee Jeong-Suk Kim 《材料科学与工程(中英文A版)》 2015年第5期221-229,共9页
关键词 振动控制系统 高速铣削加工 实时控制 快速傅里叶变换 切削颤振 刀具寿命 切削条件 表面完整性
下载PDF
Development of a 2D Vibration Stage for Vibration-assisted Micro-milling
19
作者 Shaoke WAN Naresh Kumar MAROJU Xiaoliang JIN 《Instrumentation》 2019年第1期98-108,共11页
Vibration-assisted machining(VAM) has the advantages of extending tool life,reducing cutting force and improving the surface finish.Implementation of vibration assistance with high frequency and amplitude is still a c... Vibration-assisted machining(VAM) has the advantages of extending tool life,reducing cutting force and improving the surface finish.Implementation of vibration assistance with high frequency and amplitude is still a challenge,especially for a micro-milling process.In this paper,a new 2D vibration stage for vibration-assisted micro-milling is developed.The kinematics of the milling process with vibration assistance is modeled,and the effects of vibration parameters on the periodic tool-workpiece separation(TWS) is analyzed.The structure of the vibration stage is designed with flexure hinges,and two piezoelectric actuators are used to drive the stage in two directions.An amplifier is integrated into the vibration stage,and the dynamics of the whole vibration system are identified and analyzed.Micro-milling experiments are conducted to determine the effects of vibration assistance on cutting force and surface quality. 展开更多
关键词 MICRO-milling Vibraiion-assisted MACHINING PIEZOELECTRIC actuators vibration STAGE Tool-workpiece separation
下载PDF
Surface Topography and Roughness of High-speed Milled AlMn1Cu 被引量:2
20
作者 WANG Zhenhua YUAN Juntang +1 位作者 YIN Zengbin HU Xiaoqiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1200-1207,共8页
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-sp... The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling. 展开更多
关键词 surface topography surface roughness Aluminum alloy AlMn1Cu high-speed milling
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部