期刊文献+
共找到4,647篇文章
< 1 2 233 >
每页显示 20 50 100
High-speed wind tunnel test of the CAE aerodynamic validation model 被引量:12
1
作者 Roy GEBBINK Ganglin WANG Min ZHONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期439-447,共9页
For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test... For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85. 展开更多
关键词 wind tunnel test Aerodynamic validation model Model deformation Support interference
原文传递
An Investigation into the Effects of the Reynolds Number on High-Speed Trains Using a Low Temperature Wind Tunnel Test Facility 被引量:6
2
作者 Yundong Han Dawei Chen +1 位作者 Shaoqing Liu Gang Xu 《Fluid Dynamics & Materials Processing》 EI 2020年第1期1-19,共19页
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha... A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re. 展开更多
关键词 high-speed train wind tunnel test reynolds number effect aerodynamic performance yaw angle
下载PDF
Effect of ambient wind on pressure wave generated by high-speed train entering a tunnel 被引量:7
3
作者 ZHOU Xi-sai LIU Tang-hong +2 位作者 CHEN Zheng-wei ZOU Xiang LIU Dong-run 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1465-1475,共11页
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu... Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed. 展开更多
关键词 high-speed TRAIN AMBIENT wind pressure wave tunnel
下载PDF
Review of aerodynamics of high-speed train-bridge system in crosswinds 被引量:21
4
作者 HE Xu-hui LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1054-1073,共20页
Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China. Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodyn... Serviceability and running safety of the high-speed train on/through a bridge are of major concern in China. Due to the uncertainty chain of the train dynamic analysis in crosswinds originating mainly from the aerodynamic assessment, this paper primarily reviews five meaningful progresses on the aerodynamics of the train-bridge system done by Wind Tunnel Laboratory of Central South University in the past several years. Firstly, the flow around the train and the uncertainty origin of the aerodynamic assessment are described from the fluid mechanism point of view. After a brief introduction of the current aerodynamic assessment methods with their strengths and weaknesses, a new-developed TRAIN-INFRASTRUCTURE rig with the maximum launch speed of 35 m/s is introduced. Then, several benchmark studies are presented, including the statistic results of the characterized geometry parameters of the currently utilized bridge-decks, the aerodynamics of the train, and the aerodynamics of the flat box/truss bridge-decks. Upon compared with the foregoing mentioned benchmarks, this paper highlights the aerodynamic interference of the train-bridge system associated with its physical natures. Finally, a porosity-and orientation-adjustable novel wind barrier with its effects on the aerodynamics of the train-bridge system is discussed. 展开更多
关键词 high-speed railway train-bridge system wind barrier crosswinds aerodynamic assessment wind tunnel test
下载PDF
Effects of sand sedimentation and wind erosion around sand barrier:Numerical simulation and wind tunnel test studies 被引量:5
5
作者 ZHANG Kai ZHANG Hai-long +3 位作者 DENG Yu-hui QU Jian-jun WANG Zheng-hui LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第4期962-978,共17页
Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critic... Based on numerical simulations,this study highlights the sedimentation and erosion problems around a sand barrier through the relationship between the shear stress of the surface around the sand barrier and the critical shear stress of sand grains.The numerical simulation results were verified using data measured by the wind tunnel test.The results showed that when the porosity was the same,the size and position of the vortex on the leeward side of the sand barrier were related to the inlet wind speed.As the wind speed increased,the vortex volume increased and the positions of the separation and reattachment points moved toward the leeward side.When the porosity of the sand barrier was 30%,the strength of the acceleration zone above the sand barrier was the highest,and the strength of the acceleration zone was negatively correlated with the porosity.Sand erosion and sedimentation distance were related to wind speed.With an increase in wind speed,the sand grain forward erosion or reverse erosion areas on the leeward side of the sand barrier gradually replaced the sedimentation area.With an increase in porosity,the sand sedimentation distance on the leeward side of the sand barrier gradually shortened,and the sand erosion area gradually disappeared.The sand sedimentation distance on the leeward side of the sand barrier with 30%porosity was the longest.The numerical simulation results were in good agreement with the wind tunnel test results.Based on the sand erosion and sedimentation results of the numerical simulation and wind tunnel test,when the porosity was 30%,the protection effect of the High Density Polyethylene(HDPE)board sand barrier was best. 展开更多
关键词 Sand sedimentation wind erosion Numerical simulation wind tunnel test
下载PDF
Protective benefits of HDPE board sand fences in an environment with variable wind directions on Gobi surfaces:wind tunnel study
6
作者 ZHANG Kai TIAN Jianjin +4 位作者 LIU Benli ZHAO Yanhua ZHANG Hailong WANG Zhenghui DENG Yuhui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3353-3367,共15页
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot... The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions. 展开更多
关键词 Variable wind directions Blown sand control wind tunnel tests HDPE board sand fences
下载PDF
Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China 被引量:21
7
作者 WANG Tao QU Jianjun +2 位作者 LING Yuquan XIE Shengbo XIAO Jianhua 《Journal of Arid Land》 SCIE CSCD 2017年第6期888-899,共12页
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff... The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through. 展开更多
关键词 wind-blown sand wind tunnel experiment porous fence flow field sediment flux density Lanzhou-Xinjiang high-speed Railway Gobi Desert
下载PDF
Wind tunnel tests on aerodynamic characteristics of vehicles on same-storey highway and rail bridge under crosswind 被引量:1
8
作者 ZOU Yun-feng XUE Fan-rong +2 位作者 HE Xu-hui HAN Yan LIU Qing-kuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2513-2531,共19页
In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck a... In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck and CRH2 high-speed train as research targets.Wind tunnel experiments are performed to investigate shielding effects of trains on aerodynamic characteristics of trucks.The results show that aerodynamic interference between trains and trucks varies with positions of trains(upstream,downstream)and trucks(upwind,downwind)and numbers of trains.To summarize,whether the train is upstream or downstream of tracks has basically no effect on aerodynamic forces,other than moments,of a truck driving on windward sides of bridges(upwind).In contrast,the presence of trains on the bridge deck has a significant impact on aerodynamic characteristics of a truck driving on leeward sides(downwind)at the same time.The best shielding effect on lateral forces of trucks occurs when the train is located downstream of tracks.Finally,the pressure measuring system shows that only lift forces on trains are affected by trucks,while other forces and moments are primarily affected by adjacent trains. 展开更多
关键词 same-storey highway and rail bridge container truck CRH2 high-speed train aerodynamic characteristics wind tunnel test CROSSwind
下载PDF
Aerodynamic coefficient of vehicle-bridge system by wind tunnel test 被引量:2
9
作者 周立 葛耀君 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期872-877,共6页
The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c... The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge. 展开更多
关键词 vehicle-bridge svstem section model three comnonents of aerodynamic force wind tunnel test
下载PDF
Wind tunnel test and numerical simulation of wind pressure on a high-rise building 被引量:1
10
作者 AL ZOUBI Feras 《Journal of Chongqing University》 CAS 2010年第1期47-53,共7页
We carried out a wind tunnel test to measure cladding loads for a high-rise building of 295 m in height, which would be located in the business center of Chongqing Municipality, P. R. China. The rigid model was used t... We carried out a wind tunnel test to measure cladding loads for a high-rise building of 295 m in height, which would be located in the business center of Chongqing Municipality, P. R. China. The rigid model was used to determine fluctuating local pressures on the exterior surfaces of the building. The wind tunnel test results show the cr/tical zone of wind pressures on building surfaces in both standalone and interference conditions. The computational fluid dynamics (CFD) was conducted by using the FLUENT Code to compare with the wind tunnel test results, and the steady three-dimensional turbulent flow with Realizable k-ε as a turbulence model was used. The CFD results are agree with the wind tunnel test results in regards to distributions of wind pressures over a high-rise building's surfaces. 展开更多
关键词 comoutational fluid dynamics: wind oressure: high-rise building: wind tunnel test
下载PDF
Wind Tunnel Test and Numerical Computation on Ice Accretion on Blade Airfoil for Straight-bladed VAWT
11
作者 LI Shengmao LI Yan +2 位作者 FENG Fang WANG Lijun CHI Yuan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第4期71-75,共5页
To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing ... To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured, Then the numerical computation was carded out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed. 展开更多
关键词 vertical axis wind turbine (VAWT) straight-bladed ice accretion wind tunnel test numerical computation aerodynamic characteristic
下载PDF
Wind tunnel testing of wind pressures on a large gymnasium roof
12
作者 傅继阳 吴玖荣 梁枢果 《Journal of Central South University》 SCIE EI CAS 2011年第2期521-529,共9页
A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention ... A wind tunnel test was conducted for a large steel gymnasium structure. Simultaneous pressure measurements were made on its entire ellipsoidal roof in a simulated suburban boundary layer flow field. Special attention is paid to the charaeteristics of fluctuating wind pressures in different zones on the roof. Some selected results are presented: 1) correlations between fluctuating wind pressures on both roof surfaces, 2) eigenvalues and eigenvectors of covariance matrices of the fluctuating wind pressures, 3) probability distributions of the fluctuating wind pressures, and 4) statistical characteristics of peak factor. Furthermore, the applicability of the quasi-steady approach is discussed in detail. Based on the results, an empirical formula for estimating the minimum pressure coefficients, using a peak factor approach, is presented. Comparison of the minimum pressure coefficients determined by the proposed formula and those obtained from the wind tunnel tests is made to examine the applicability and accuracy of the proposed formula. 展开更多
关键词 long-span roof wind pressure wind tunnel test gymnasium roof
下载PDF
Research on wind erosion processes and controlling factors based on wind tunnel test and 3D laser scanning technology
13
作者 YAN Ping WANG Xiaoxu +2 位作者 ZHENG Shucheng WANG Yong LI Xiaomei 《Journal of Arid Land》 SCIE CSCD 2022年第9期1009-1021,共13页
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Auton... The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring. 展开更多
关键词 3D laser scanning technology wind erosion wind tunnel test wind erosion depth MICROTOPOGRAPHY soil hardness
下载PDF
Wind Tunnel Test on the Wind-Resistant Behavior of a Long-Span Cable-Stayed Bridge during Erection
14
作者 马存明 廖海黎 陶奇 《Journal of Southwest Jiaotong University(English Edition)》 2010年第2期112-117,共6页
In order to investigate the aerodynamic behavior of the Sutong bridge over Yangtze River during erection, a 1:50 sectional model of the bridge deck, a 1: 100 full aeroelastic model of the free standing pylon and a 1... In order to investigate the aerodynamic behavior of the Sutong bridge over Yangtze River during erection, a 1:50 sectional model of the bridge deck, a 1: 100 full aeroelastic model of the free standing pylon and a 1: 125 full aeroelastic model for the maxim cantilever configuration were built. The test results show that there was no serious vortex-induced vibration at the bridge deck, and that the free standing tower, the model scale and the turbulence intensity influenced static loading. The buffeting responses during the maximum cantilever configuration did not affect the safety of the bridge under construction. 展开更多
关键词 Cable-stayed bridge Erection stage Aerodynamic behavior wind tunnel test
下载PDF
Effects of Tuned Mass Damper on Wind-Induced Vibration of Free Standing Pylon by Wind Tunnel Test
15
作者 王中文 朱宏平 马存明 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期109-112,共4页
In order to assess the effects of tuned mass dampers (TMDs) on wind actions, an aeroelastic model with a scale of 1:60 was constructed. Tests were performed in an atmospheric boundary layer wind tunnel to investiga... In order to assess the effects of tuned mass dampers (TMDs) on wind actions, an aeroelastic model with a scale of 1:60 was constructed. Tests were performed in an atmospheric boundary layer wind tunnel to investigate the buffeting response of the pylon with a TMD fixed by a wire rope instead of a spring. The model was tested under different levels of damping. The experimental and numerical results showed that with the TMD in the optimal condition, the buffeting response was reduced by 47%. 展开更多
关键词 Buffeting response Tuned mass damper wind tunnel test Free standing pylon
下载PDF
Similarity Study on Snowdrift Wind Tunnel Test
16
作者 Weihua Wang Haili Liao +1 位作者 Mingshui Li Hanjie Huang 《Open Journal of Civil Engineering》 2013年第3期13-17,共5页
The model for snowdrift wind tunnel test needs to be similar with the prototype. Based on detailed analysis in aspects of geometry, kinematics and dynamics, the major similarity parameters that need to be satisfied ar... The model for snowdrift wind tunnel test needs to be similar with the prototype. Based on detailed analysis in aspects of geometry, kinematics and dynamics, the major similarity parameters that need to be satisfied are gained. The contradiction between the Reynolds number and Froude number as well as the problem of time scale is introduced, and the selections of the model parameters are specified. Lastly, an example of snowdrift wind tunnel test by adoption of quartz sand as the model of snow grains is presented. The flow field and the snow distributions on a typical stepped roof were investigated. The results show that the flow filed characters are in good agreement with the field observations, and the stepped roof snow depth distributions are basically consistent with the observation results. 展开更多
关键词 SIMILARITY PARAMETERS wind tunnel test SNOWDRIFT ROOF
下载PDF
Design and Wind Tunnel Study of a Top-mounted Diverterless Inlet 被引量:18
17
作者 谭慧俊 郭荣伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期72-78,共7页
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top... Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen. 展开更多
关键词 top-mounted inlet diverterless inlet unmanned air vehicle DESIGN wind tunnel test
下载PDF
Aerodynamic characteristics of a high-speed train crossing the wake of a bridge tower from moving model experiments 被引量:5
18
作者 Jinfeng Wu Xiaozhen Li +1 位作者 C.S.Cai Dejun Liu 《Railway Engineering Science》 2022年第2期221-241,共21页
In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This st... In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This study investigates the transient aerodynamic characteristics of a high-speed train moving in a truss girder bridge and passing by a bridge tower in a wind tunnel.The scaled ratio of the train,bridge,and tower are 1:30.Effects of various parameters such as the incoming wind speed,train speed,and yaw angle on the aerodynamic performance of the train were considered.Then the sudden change mechanism of aerodynamic loads on the train when it crosses over the tower was further discussed.The results show that the bridge tower has an apparent shielding effect on the train passing through it,with the influencing width being larger than the width of the tower.The train speed is the main factor affecting the influencing width of aerodynamic coefficients,and the mutation amplitude is mainly related to the yaw angle obtained by changing the incoming wind speed or train speed.The vehicle movement introduces an asymmetry of loading on the train in the process of approaching and leaving the wake of the bridge tower,which should not be neglected. 展开更多
关键词 Vehicle aerodynamics wind tunnel test Moving train Bridge tower Shielding effect Sudden change mechanism Truss bridge
下载PDF
Measurements of Wind Loads on Side-by-Side Semi-Submersibles in A Wind Tunnel 被引量:1
19
作者 DONG Qing GUO Xiao-xian +2 位作者 YANG Jian-min LU Hai-ning HUANG Longwei 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期531-543,共13页
The multi-body system has been a popular form for offshore operations in terms of high efficiency.The wind effects are crucial which directly affect the relative positions of floating bodies and operating security.In ... The multi-body system has been a popular form for offshore operations in terms of high efficiency.The wind effects are crucial which directly affect the relative positions of floating bodies and operating security.In this study,the aerodynamic characteristics for two coupled semi-submersibles were analyzed in a wind tunnel to fill the gaps in literature related to the wind sheltering on offshore platforms.The influences of separation distance were also investigated.According to the results,substantial shielding effects were observed and wind forces on the shielded vessel decreased dramatically:a reduction in the transverse force could be up to 74%.Moreover,the longitudinal wind load was amplified by the platform abreast in a side-by-side configuration.As expected,the interference level became more pronounced with a decreasing separation distance.For cases in which wind interaction decayed rapidly with distance,logarithmic functions were preferable for describing the relationship between them.Whereas linear fitting was reasonable for the transverse wind force when there was still evident sheltering at a quite large distance.The length of shielding area was another important factor that there was approximately a linear relationship between it and the shielding level for two platforms in close proximity at various wind attack angles.Based on the two parameters,a preliminary wind loads estimation method considering shielding effects was proposed.This approach can aid the industry to have a qualitative assessment of wind sheltering especially at early stages. 展开更多
关键词 wind loads side-by-side shielding effect wind tunnel test
下载PDF
Wind tunnel study of aerodynamic wind loading on middle pylon of Taizhou Bridge 被引量:1
20
作者 Zhang Zhen Ma Rujin +1 位作者 Hu Xiaohong Chen Airong 《Engineering Sciences》 EI 2011年第2期69-73,共5页
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea... Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns. 展开更多
关键词 wind tunnel test aerodynamic force coefficient interference effects segment sectional model tests middle pylon Taizhou Bridge
下载PDF
上一页 1 2 233 下一页 到第
使用帮助 返回顶部