The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with...This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.展开更多
Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straigh...Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.展开更多
The high-speed wire rod finishing mill production line consisting of more than 10 key items of equipment such as a heating furnace,major rolling mill, secondary rolling mill,preliminary refining mill, finishing mill, ...The high-speed wire rod finishing mill production line consisting of more than 10 key items of equipment such as a heating furnace,major rolling mill, secondary rolling mill,preliminary refining mill, finishing mill, carrier roller, wire-drive machine, coiler, and packing machine, is a technology-intensive product combining modern rolling technology with the high-technology of machinery, electronics,hydromatic drive and instrumentation, which only a few countries in the world can produce.展开更多
As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed rail...As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing...A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.展开更多
This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of tran...This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.展开更多
A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlineari...A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlinearity of wires and suspension insulators are considered, but also the support towers are included. The incremental and iterative approaches are combined by applying the unbalanced loads incrementally during each iteration cycle. The approach was illustrated with an example of a Hanjiang- River long-span transmission line system subjected to a shield wire and a conductor failure, respectively. The analysis results showed that the proposed dynamic simulation approach can demonstrate the kinetic process of the tower-line system subjected to wire ruptures: The frequencies of line components were lower and densely distributed, but the frequencies of tower components were higher and sparsely distributed. Anyhow, the dynamic effects of wire ruptures on tower-line system could not be ignored in analysis of tower-line system subjected wire failures.展开更多
Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected fr...Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.展开更多
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
文摘This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.
基金Project(2014JBZ012)supported by the Fundamental Research Funds for the Central Universities,China
文摘Taking the development of high-speed railway in China as background, and referring to the dynamic theory and wheel-rail contact mode, dynamic analysis model was established, considering the setting position of straight lines and running conditions of train in high-speed railway station yard. Using the established model, and choosing vehicle lateral acceleration and wheel suspension as the evaluation indexes, dynamic characteristic of vehicle traveling in turnout and adjacent area on main line was analyzed, and effects on travelling safety and stability of train aroused by length variation of straight lines were calculated based on analyzing the damping rules of vibration. The results show that, a certain length of straight lines can alleviate the vibration aroused in turnout and curve(turnout), length of straight lines connecting turnouts in different sections on main line was proposed to meet the demand of traveling stability, and shortening or cancelation of straight line for the scale limitation of station yard has less influence on operation safety of train.
文摘The high-speed wire rod finishing mill production line consisting of more than 10 key items of equipment such as a heating furnace,major rolling mill, secondary rolling mill,preliminary refining mill, finishing mill, carrier roller, wire-drive machine, coiler, and packing machine, is a technology-intensive product combining modern rolling technology with the high-technology of machinery, electronics,hydromatic drive and instrumentation, which only a few countries in the world can produce.
基金supported by the National Natural Science Foundation of China(Nos.U19A20105,51837009,51807167,51922090,U1966602 and 52077182)the Scientific and Technological Funds for Young Scientists of Sichuan(No.2019JDJQ0019)。
文摘As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
文摘A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.
基金Supported by the National Natural Science Foundation of China(No.61171039,61072059)
文摘This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.
基金Research Fund of Chinese State Grid Company (No.SGKJ[2007]413)
文摘A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlinearity of wires and suspension insulators are considered, but also the support towers are included. The incremental and iterative approaches are combined by applying the unbalanced loads incrementally during each iteration cycle. The approach was illustrated with an example of a Hanjiang- River long-span transmission line system subjected to a shield wire and a conductor failure, respectively. The analysis results showed that the proposed dynamic simulation approach can demonstrate the kinetic process of the tower-line system subjected to wire ruptures: The frequencies of line components were lower and densely distributed, but the frequencies of tower components were higher and sparsely distributed. Anyhow, the dynamic effects of wire ruptures on tower-line system could not be ignored in analysis of tower-line system subjected wire failures.
文摘Practically,the load currents in three phases are asymmetric in the power system.It means that the impedances are different in all three phases.If the consumer’s transformer neutral cut off and/or was disconnected from the neutral of power supply source,then there will be some trouble and failure occurred.The current in the neutral wire drops down to zero when the neutral wire is cut off and the phase currents of all three-phase equal to each other since there was no return wire.The currents are equal but the voltages at the phase consumers are different.Especially for residential single-phase consumers,the voltage at the consumers of the phase varies differently for three phase systems when the neutral wire was disconnected at consumer side and even the voltage at the consumers one or two of those three phases becomes over nominal voltage or reaches nearly line voltage.In this case,the electronic appliances in that phase will be fed by high voltage than the rated value and they can be broken down.In the power system of UB(Ulaanbaatar)city,there are some occasional such kind of failures every year.Obviously,many electronic appliances were broken down due to high voltage and the electricity utility companies respond for service charge of damaged parts.