期刊文献+
共找到11,669篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
1
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains 被引量:1
2
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 al–Zn–Mg–Cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet 被引量:9
3
作者 HE Ke-zhun LI Qun +2 位作者 LIU Sheng-dan ZHANG Xin-ming ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2660-2669,共10页
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different... The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC. 展开更多
关键词 high-strength aluminum alloy PRE-STRETCHING tensile properties quench sensitive effect strengthening precipitates
下载PDF
α″phase-assisted nucleation to obtain ultrafineαprecipitates for designing high-strength near-βtitanium alloys 被引量:5
4
作者 Zhen-yu WANG Li-bin LIU +3 位作者 Di WU Li-gang ZHANG Wan-lin WANG Ke-chao ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2681-2696,共16页
The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can ... The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps. 展开更多
关键词 alloy design high-strength titanium alloy α″phase α/βinterface twin deformation
下载PDF
Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy 被引量:6
5
作者 Quantong Jiang Xiumin Ma +5 位作者 Kui Zhang Yantao Li Xinggang Li Yongjun Li Minglong Ma Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期309-314,共6页
A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-directio... A high-strength AZ80 Mg alloy was prepared through multi-direction forging,thermal extrusion,and peak-aged heat treatment.The microstructure,crystallographic orientation and corrosion performance of extrusion-direction,transverse-direction,and normal-direction specimens were investigated using scanning electron microscopy,electron backscatter diffraction,and atomic force microscopy,respectively.Experimental results showed that crystallographic orientation significantly influenced the corrosion performance of AZ80 Mg alloy.Corrosion rates largely increased with decreased(0001)crystallographic plane intensity,whereas the(10−10)and(2−1−10)crystallographic plane intensities increased.This study showed that the corrosion rates of alloy can be modified to some extent by controlling texture,thereby promoting the applications of high-strength AZ80 Mg alloys in the aerospace and national-defense fields. 展开更多
关键词 high-strength AZ80 Mg alloy ANISOTROPY WROUGHT Crystallographic orientation Corrosion performance Surface energy
下载PDF
New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties 被引量:2
6
作者 Di Wu Wan-lin Wang +3 位作者 Li-gang Zhang Zhen-yu Wang Ke-chao Zhou Li-bin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1151-1165,共15页
The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtai... The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size. 展开更多
关键词 high-strength TITANIUM alloy Ti–6al–4V–xMo diffusion multiple THERMO-CalC microstructure and mechanical properties
下载PDF
Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy 被引量:3
7
作者 Hao Chen Yanmei Yang +7 位作者 Conglin Hu Gang Zhou Hui Shi Genzhi Jiang Yuanding Huang Norbert Hort Weidong Xie Guobing Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2397-2410,共14页
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat... The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships. 展开更多
关键词 high-strength Mg alloy conventional extrusion fine grains hot deformation behavior constitutive relationship microstructural evolution
下载PDF
Advances in titanium alloys and orthopedic implants:new titanium alloys and future research directions
8
作者 Yu Mori Naoko Mori 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期1053-1054,共2页
Dear Editor,We read with great interest the article by Tan et al.titled“Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K-Akt signaling pathway”[1].This research thoroughly examines the bon... Dear Editor,We read with great interest the article by Tan et al.titled“Accelerated fracture healing by osteogenic Ti45Nb implants through the PI3K-Akt signaling pathway”[1].This research thoroughly examines the bone-forming capabilities of the Ti45Nb alloy.The in vitro studies revealed that the Ti45Nb alloy enhances the osteogenic differentiation of MC3T3-E1 cells more effectively than Ti6Al4V alloy controls,showing no noticeable cytotoxic effects. 展开更多
关键词 TI6al4V alloy. alloy
下载PDF
Process of friction-stir welding high-strength aluminum alloy and mechanical properties of joint 被引量:3
9
作者 王大勇 冯吉才 +3 位作者 郭德伦 孙成彬 栾国红 郭和平 《China Welding》 EI CAS 2004年第2期159-162,共4页
The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters... The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side. 展开更多
关键词 friction-stir welding high-strength aluminum alloy mechanical property
下载PDF
Promoting dynamic recrystallization and improving strength and ductility of Mg-7Bi alloy through Al addition
10
作者 Gun Woong An Sang-Cheol Jin +2 位作者 Hyun Ji Kim Sumi Jo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3339-3356,共18页
This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the ... This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the B7 alloy resulted in a lower grain size,a reduction in the number density of fine Mg3Bi2 particles,and a higher area fraction of relatively coarse Mg3Bi2 particles in the extrusion billet.These microstructural changes increased the nucleation sites for recrystallization,reduced the Zener pinning effect,and enhanced particle-stimulated nucleation,all of which promoted dynamic recrystallization behavior during extrusion.As a result,the area fraction of recrystallized grains in the extruded alloy increased from 77%to 94%.The extruded B7 alloy exhibited a strong<10-10>fiber texture,whereas the extruded Mg-7Bi-2Al(BA72)alloy had a weak<10-10>-<2-1-10>texture,which was attributed to the minimal presence of unrecrystallized grains and the dispersed orientation of the recrystallized grains.The tensile yield strength(TYS)of the extruded BA72 alloy was higher than that of the extruded B7 alloy(170 and 124 MPa,respectively),which resulted from the enhanced grain-boundary and solid-solution strengthening effects.The tensile elongation(EL)of the BA72 alloy also exceeded that of the B7 alloy(20.3%and 6.1%,respectively),the result of the uniform formation of fine twins under tension in the former and the formation of a few coarse twins among the unrecrystallized grains in the latter.Consequently,the addition of a small amount of Al to the B7 alloy significantly improved both the strength and ductility of the extruded alloy,resulting in a remarkable increase in the product of the TYS and EL from 756 to 3451 MPa%and expanding its potential range of applications as a lightweight extruded structural component. 展开更多
关键词 Mg-7Bi alloy al addition Extrusion Recrystallization Microstructure
下载PDF
Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding
11
作者 Zongan Luo Xin Zhang +3 位作者 Zhaosong Liu Hongyu Zhou Mingkun Wang Guangming Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1890-1899,共10页
This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile... This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs. 展开更多
关键词 6061 al alloy hot-roll bonding VACUUM mechanical properties interfacial grain boundaries
下载PDF
Strengthening mechanism of T8-aged Al-Cu-Li alloy with increased pre-deformation
12
作者 San-xi DENG Jin-feng LI +5 位作者 Li WANG Yue-yan CHEN Zheng-wu XIANG Peng-cheng MA Yong-lai CHEN Dan-yang LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3151-3169,共19页
The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthe... The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels. 展开更多
关键词 al−Cu−Li alloy PRE-DEFORMATION PRECIPITATION STRENGTH strengthening mechanism
下载PDF
Erratum to: New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties 被引量:1
13
作者 Di Wu Wan-lin Wang +3 位作者 Li-gang Zhang Zhen-yu Wang Ke-chao Zhou Li-bin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第1期129-129,共1页
Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately containe... Erratum to:International Journal of Minerals, Metallurgy and Materials Volume 26, Number 9, September 2019, Page 1151https://doi.org/10.1007/s12613-019-1854-1The original version of this article unfortunately contained a mistake. The presentation of Fig. 11 was incorrect. The correct version is given below: 展开更多
关键词 Mo alloy al Erratum to New high-strength Ti from high-throughput composition design to mechanical properties
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds
14
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed al alloy
下载PDF
Characteristics and distribution of microstructures in high pressure die cast alloys with X-ray microtomography:A review
15
作者 Hai-dong Zhao Xue-ling Wang +2 位作者 Qian Wan Wen-hui Bai Fei Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期427-444,共18页
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ... Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys. 展开更多
关键词 high pressure die casting microstructure three-dimensional characteristics DISTRIBUTION al and Mg alloys
下载PDF
Microstructure evolution and tensile behavior of balanced Al−Mg−Si alloy with various homogenization parameters
16
作者 Dong JIN Hong-ying LI +5 位作者 Zhi-xiang ZHU Chang-long YANG Yao-jun MIAO Chao XU Bao-an CHEN Zhen LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3536-3553,共18页
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,... The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization. 展开更多
关键词 al−Mg−Si alloy HOMOGENIZATION kinetic model Fe-bearing phase tensile behavior
下载PDF
Effect of ultrasonic and mechanical vibration treatments on evolution of Mn-rich phases and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys
17
作者 Bo LIN Xiang-xiang HE +3 位作者 Song-chao XIA Hua-qiang XIAO Yu-liang ZHAO Khashayar KHANLARI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2393-2414,共22页
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV... Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines. 展开更多
关键词 al−Si piston alloys Mn-rich phases mechanical properties ultrasonic vibration mechanical vibration
下载PDF
Hybrid machine learning and microstructure-based approach for modeling relationship between microstructure and hardness of AA2099 Al−Li alloy
18
作者 Xiang-hui ZHU Xu-sheng YANG +3 位作者 Wei-jiu HUANG Miao GONG Xin WANG Meng-di LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3504-3520,共17页
A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation,X-ray diffractio... A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation,X-ray diffraction(XRD)and electron backscatter diffraction(EBSD)technologies.Random forest regression(RFR)model was employed to predict hardness based on microstructural features and uncover influential factors and their rankings.The results show that the increased hardness correlates with a smaller distance from indentation to grain boundary(D_(dis))or a shorter minimum grain axis(D_(min)),a lower Schmidt factor in friction stir weld direction(SF_(FD)),and higher sine values of the angle between{111}slip plane and surface(sinθ_(min)).D_(dis) and D_(min) emerge as pivotal determinants in hardness prediction.High-angle grain boundaries imped dislocation slip,thereby increasing hardness.Crystallographic orientation also significantly influences hardness,especially in the presence of T_(1) phases along{111}Al habit planes.This effect is attributable to the variation in encountered T_(1) variants during indenter loading.Consequently,the importance ranking of microstructural features shifts depending on T_(1) phase abundance:in samples with limited T_(1) phases,D_(dis) or D_(min)>SF_(FD)>sinθ_(min),while in samples with abundant T_(1) phases,D_(dis) or D_(min)>sinθ_(min)>SF_(FD). 展开更多
关键词 machine learning T_(1)phase HARDNESS al−Li alloy
下载PDF
Effect of Sc on Al_(3)Fe phase and mechanical properties of as-cast AA5052 aluminum alloy
19
作者 Yang Li Qing Yu +3 位作者 Feng-feng Chen Jia-wen He Hong-mei Yang Meng-nie Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期257-264,共8页
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud... The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content. 展开更多
关键词 AA5052 aluminum alloy al3Fe phase mechanical properties grain boundary
下载PDF
Corrosion behavior of 2A97 Al-Cu-Li alloys in different thermomechanical conditions by quasi-in-situ analysis
20
作者 You Lü Xiang-zhe MENG +2 位作者 Yan-yan LI Ze-hua DONG Xin-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2772-2786,共15页
As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor... As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions. 展开更多
关键词 al−Cu−Li alloy corrosion behavior quasi-in situ analysis grain-stored energy thermomechanical treatment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部