期刊文献+
共找到2,589篇文章
< 1 2 130 >
每页显示 20 50 100
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
1
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:2
2
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio;the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. 展开更多
关键词 high-strength STIRRUP high-strength longitudinal REINFORCEMENT high-strength SHORT concrete column SEISMIC performance
下载PDF
Vibration analysis of damaged and undamaged steel structure systems: cantilever column and frame 被引量:2
3
作者 Muhammad Abuzar Khan Kareem Akhtar +2 位作者 Naveed Ahmad Feroz Shah Naeem Khattak 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第3期725-737,共13页
This paper presents the experimental and numerical studies conducted on a steel column and a steel frame structure using free vibration analysis.The effects of damages on structures were investigated,which were simula... This paper presents the experimental and numerical studies conducted on a steel column and a steel frame structure using free vibration analysis.The effects of damages on structures were investigated,which were simulated by introducing multiple cracks at different locations in the experimental and numerical models.The acceleration responses of the test models,were recorded through an accelerometer,and were used to calibrate the numerical models developed in finite element based software.Modal frequencies of damaged and undamaged structures were compared and analyzed,to derive relationships for damaged and undamaged structures’frequencies in terms of crack depth.It was found that,due to the presence of cracks,the mechanical properties of a structure changes,whereby,the modal frequencies decrease.An approximately linear trend was observed for the frequency decrease with the increase in crack depth,which was also confirmed by the numerical models.The derived relationships were extended to further develop a mechanics-based damage scale for steel structures,to help facilitate structural health monitoring and screening of vulnerable structures. 展开更多
关键词 STEEL column frame
下载PDF
Nonlinear fi nite element analysis of high-strength concrete columns and experimental verification 被引量:1
4
作者 吕西林 陈绍琳 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期77-89,共13页
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant... This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented. 展开更多
关键词 high-strength concrete column DIANA BOND-SLIP balanced axial load ratio stirrup ratio
下载PDF
Seismic Behavior of Frame with Specially Shaped Columns Subjected to Cyclic Load 被引量:5
5
作者 王铁成 李新华 赵少伟 《Transactions of Tianjin University》 EI CAS 2007年第5期340-343,共4页
In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer ... In order to study the seismic behavior of frame with specially shaped columns,the hysteretic curve was analyzed based on a quasi-static test of a two-span,three-story frame with specially shaped columns.The top layer framework curve and the corresponding resilience model were obtained from the hysteretic curve.And the stiffness and strength degeneration were also investigated.The results indicated that the stiffness degeneration is not obvious,thus the frame with specially shaped columns has high earthquake-resistant behavior.The resilience model calculated from the test can provide reference for design and nonlinear finite element analysis. 展开更多
关键词 地震 回弹力 循环负荷 技术性能
下载PDF
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints 被引量:3
6
作者 Y.C.Sung T.K.Lin +1 位作者 C.C.Hsiao M.C.Lai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期373-383,共11页
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p... Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner. 展开更多
关键词 RC frame beam-column joint pushover analysis capacity curve plastic hinge performance-based seismic evaluation
下载PDF
Frame property of unequal storey height with specially shaped columns under cyclic loading 被引量:6
7
作者 王铁成 张学辉 《Journal of Central South University》 SCIE EI CAS 2010年第6期1364-1369,共6页
A 1/3-scale reinfored concrete(RC) frame of unequal storey height with specially shaped columns was tested under low frequency cyclic loading.The damage characteristic,bearing capacity,deformation capacity and ductili... A 1/3-scale reinfored concrete(RC) frame of unequal storey height with specially shaped columns was tested under low frequency cyclic loading.The damage characteristic,bearing capacity,deformation capacity and ductility were analyzed.The restoring force model of the frame was obtained based on the study of the hysteresis curve measured in experiment,and the stiffness degeneration characteristics of every storey of the frame were analyzed.Finally the accumulated damage was analyzed with the damage assessment model.It is shown that the seismic behavior of this frame of unequal storey height with specially shaped columns is generally good,but the bottom of first floor column is a weak part,which should be paid more attention in design,and the restoring force model derived from this experiment can be seen as a valuable guide for design and non-linear finite element analysis for this kind of structure. 展开更多
关键词 装裱恢复力量的特殊塑造的列积累的损坏地震行为
下载PDF
New Factor to Characterize Mechanism of “Strong Column-Weak Beam” of RC Frame Structures 被引量:1
8
作者 李心霞 公茂盛 +1 位作者 韩庆华 谢礼立 《Transactions of Tianjin University》 EI CAS 2015年第6期484-491,共8页
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ... Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values. 展开更多
关键词 下线 服务 迁移
下载PDF
Pseudo-dynamic test and numerical simulation of high-strength concrete frame structure reinforced with high-strength rebars
9
作者 Chen Xin Yan Shi Ji Baojian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期303-311,共9页
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen w... This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models. 展开更多
关键词 high-strength concrete pseudo dynamic test seismic response analysis frame structure finite elementmethod OPENSEES
下载PDF
Seismic behavior of multiple reinforcement,high-strength concrete columns:experimental and theoretical analysis
10
作者 Xing Guohua Wang Haonan Osman E.Ozbulut 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期359-375,共17页
This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC co... This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns. 展开更多
关键词 high-strength concrete multiple reinforcement columns seismic behavior theoretical model cyclic loading test
下载PDF
Research on the structural design and the shock-resistant performance of the steel beam-concrete column frame structure
11
作者 WANG Qiao 《International English Education Research》 2019年第2期56-59,共4页
The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has ... The steel beam-concrete column(RCS)frame structure is composed of the reinforced concrete columns and the steel beams,which is a composite structure with the superior performances.This kind of the frame structure has been rapidly developed and widely used in the field of the civil engineering because of its high building applicability,the fast construction speed,the low cost of the foundation and the good mechanical properties.Various kinds of the large-span,heavy-load and high-rise buildings emerge in endlessly,and the requirement for the structural performance is becoming higher and higher.The reinforced concrete column-steel beam composite frame structure is a high-performance structural system with the broad development prospects in China because of its good mechanical performance,durability,fire resistance and the building use space. 展开更多
关键词 Steel beam-concrete column frame structure CONFIGURATION design shock-resistant PERFORMANCE
下载PDF
Elasto-plastic Analysis of High-strength Concrete Shear Wall with Boundary Columns Using Fiber Model
12
作者 Xiaolong Tong Yangjing Ou +2 位作者 Sixi Xiao Jianliang Wu Fumin Chen 《Journal of Construction Research》 2020年第1期21-28,共8页
In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wal... In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wall were divided into fiber elements,and PERFORM-3D finite element analysis software was used to carry out push-over analysis on the test specimens.The results show that the finite element analysis results were in good agreement with the experimental results.The proposed analysis method could perform elasto-plastic analysis on the high-strength concrete shear wall with boundary columns without distinguishing the categories of frame column and shear wall.The seismic performance of high-strength concrete shear wall with boundary columns was analyzed using the following parameters:axis compression ratio,height to width ratio,ratio of vertical reinforcement,and ratio of longitudinal reinforcement in the boundary column.The results show that the increase in the axial compression ratio causes the bearing capacity of the shear wall to increase at first and then to decrease and causes the ductility to decrease.The increase in the height to width ratio causes the bearing capacity of the shear wall to decrease and its ductility to increase.The ratio of vertical reinforcement was found to have little effect on the bearing capacity and ductility.The increase in the ratio of longitudinal reinforcement in boundary column resulted in a significant increase in the bearing capacity and caused the ductility to decrease at first and then to slowly increase. 展开更多
关键词 Boundary columns high-strength concrete Fiber model Shear wall
下载PDF
Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns
13
作者 李忠献 景萌 +1 位作者 郝永昶 康谷贻 《Transactions of Tianjin University》 EI CAS 2005年第6期412-416,共5页
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und... Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one. 展开更多
关键词 钢筋混凝土构架 地震行为 裂缝柱 短柱 模型试验
下载PDF
Bilateral shear strength of rectangular frame column based on simplified space truss-arch model
14
作者 董春敏 《Journal of Chongqing University》 CAS 2010年第4期195-200,共6页
To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameter... To investigate the bilateral shear strength of rectangular frame column subjected to oblique horizontal load, we presented a simplified space truss-arch model developed from unilateral truss-arch model. Main parameters in the new model were the cross-sectional area, transverse reinforcement raito, axial load, and material strength of the column. The reduction coefficient of concrete sterength owing to the severe cracking of column was also introduced in the model. Finally, 14 specimens under oblique horizontal load were tested to verified the feasibility and applicability of the space truss-arch model. 展开更多
关键词 空间捆绑拱门模型 矩形的框架列 双边砍力量 倾斜的水平负担 试验性的研究
下载PDF
功能可恢复RCS混合框架结构研究进展
15
作者 刘阳 钟沛杰 +3 位作者 门进杰 陈云 刘小娟 黄玉佳 《华侨大学学报(自然科学版)》 CAS 2024年第2期121-135,共15页
钢筋混凝土柱-钢梁(RCS)混合框架结构以其结合了混凝土优异的抗压性能及钢材优异的抗弯性能而受到广泛关注,而可恢复功能结构以其震后快速恢复使用功能的能力,也成为地震工程界研究的新热点。功能可恢复RCS混合框架结构可以在弯矩较大... 钢筋混凝土柱-钢梁(RCS)混合框架结构以其结合了混凝土优异的抗压性能及钢材优异的抗弯性能而受到广泛关注,而可恢复功能结构以其震后快速恢复使用功能的能力,也成为地震工程界研究的新热点。功能可恢复RCS混合框架结构可以在弯矩较大的梁端和柱脚部位设置可更换构件,实现结构的功能可恢复能力。文中简述了近年来功能可恢复RCS混合框架结构研究进展,重点关注各类型功能可恢复钢梁、功能可恢复摇摆柱脚的构造研究,介绍了功能可恢复RCS混合框架结构性能分析研究进展。最后,对功能可恢复RCS混合框架结构仍需深入研究的问题进行了展望。 展开更多
关键词 钢筋混凝土柱-钢梁(RCS)混合框架结构 可恢复功能 防震结构 钢板阻尼器 柱脚 梁柱节点
下载PDF
铰接方钢管组合异形柱框架抗震性能研究
16
作者 周婷 肖潇 +1 位作者 陈志华 王子刚 《建筑钢结构进展》 CSCD 北大核心 2024年第2期64-75,共12页
为解决村镇住宅体系存在的装配式程度及标准化程度较低、现场焊接工作繁多、室内建筑面积浪费等问题,提出了一种铰接方钢管组合异形柱框架体系。该体系中异形柱采用3根空钢管通过钢板与加劲肋组合而成的L形柱,梁柱节点为腹板螺栓连接的... 为解决村镇住宅体系存在的装配式程度及标准化程度较低、现场焊接工作繁多、室内建筑面积浪费等问题,提出了一种铰接方钢管组合异形柱框架体系。该体系中异形柱采用3根空钢管通过钢板与加劲肋组合而成的L形柱,梁柱节点为腹板螺栓连接的铰接节点。通过拟静力试验对该体系的抗震性能进行研究。研究结果表明:相比于铰接钢管混凝土组合异形柱,铰接空钢管组合异形柱框架体系先于梁端出现转角,最后破坏模式为柱脚破坏,具有更优良的抗震耗能和更缓慢的强度与刚度退化,并通过对比刚接节点和铰接节点的骨架曲线,发现节点刚接程度对结构整体的抗侧刚度影响较大。 展开更多
关键词 铰接节点 异形柱框架结构 拟静力试验 村镇住宅 抗震性能
下载PDF
设有叠合柱的局部错层RC框架结构地震易损性分析
17
作者 张淑云 刘建波 +2 位作者 代慧娟 王乐 高欣悦 《中国科技论文》 CAS 2024年第3期275-283,共9页
为研究某一设有叠合柱的局部错层钢筋混凝土(reinforced concrete,RC)框架结构在近断层和远场地震作用下的破坏概率,自定义钢管混凝土叠合柱塑性铰参数,并与试验对比验证塑性铰参数的有效性。采用SAP2000建立非线性分析模型,选取近断层... 为研究某一设有叠合柱的局部错层钢筋混凝土(reinforced concrete,RC)框架结构在近断层和远场地震作用下的破坏概率,自定义钢管混凝土叠合柱塑性铰参数,并与试验对比验证塑性铰参数的有效性。采用SAP2000建立非线性分析模型,选取近断层和远场地震波共22条,分别以地震峰值加速度(peak ground acceleration,PGA)和最大层间位移角作为地震动强度指标和结构性能指标,基于增量动力分析(incremental dynamic analysis,IDA)结果和点估计函数对错层框架结构进行易损性分析。结果表明:对于远场地震动,结构满足“三水准”抗震设防要求,在罕遇地震下超越防止倒塌极限状态的概率仅为0.24%;结构在近断层多遇地震下仍能满足“小震不坏”的设计要求,设防地震下结构超越修复后使用极限状态的概率为53.63%,发生中等破坏的概率较大,罕遇地震下结构达到倒塌极限状态的概率为5.37%,较远场地震作用破坏更为严重。研究结果可为错层框架结构的设计和地震风险评估提供参考。 展开更多
关键词 近断层地震 错层框架结构 钢管混凝土叠合柱 增量动力分析 点估计
下载PDF
甘溪特大桥空腹三角区施工阶段受力分析
18
作者 孙克强 李百富 薛其林 《中外公路》 2024年第4期180-189,共10页
甘溪特大桥是主跨300 m的空腹式连续刚构桥,空腹三角区上弦箱梁采用可伸缩部分立柱后支配合挂篮悬浇,下弦箱梁采用全斜拉扣挂法配合挂篮悬浇。为分析采用该施工方法在三角区临时结构体系中的受力特性,总结三角区临时结构体系施工过程中... 甘溪特大桥是主跨300 m的空腹式连续刚构桥,空腹三角区上弦箱梁采用可伸缩部分立柱后支配合挂篮悬浇,下弦箱梁采用全斜拉扣挂法配合挂篮悬浇。为分析采用该施工方法在三角区临时结构体系中的受力特性,总结三角区临时结构体系施工过程中受力变化规律,验证施工方法的有效性,并提出临时扣索和支撑立柱的最佳解除时机,采用有限元结构分析软件模拟全桥施工过程。结果表明:采用该工法施工,结构受力满足规范要求。三角区施工过程中,已施工的上、下弦箱梁以受压为主,受下一节段混凝土浇筑、立柱支顶、扣索张拉等工序影响,其间会出现短暂轻微受拉状态。三角区合龙完成时,箱梁截面以受压为主,局部存在轻微受拉。全桥合龙后三角区箱梁为全受压状态,较三角区合龙状态压应力增加明显。临时扣索、立柱拆除后,上、下弦箱梁出现了明显的应力重分布,但仍为全受压状态。临时扣索索力峰值均出现在三角区合龙完成前,三角区合龙后总体呈下降趋势,临近拆除前有所回升。后方临时立柱在施工过程中支撑力总体呈下降趋势,前方立柱呈上升趋势,临近拆除前立柱支撑力增幅均较大。经比选,推荐全桥合龙后先拆立柱、再拆扣索。 展开更多
关键词 甘溪特大桥 空腹式连续刚构桥 三角区 临时扣索 支撑立柱 受力分析
下载PDF
框架结构梁柱抗震内力调整研究
19
作者 汤繁华 《重庆建筑》 2024年第7期61-64,共4页
框架梁端剪力调整之前,应先计算控制截面内力,后进行梁端弯矩调幅,使结构更加安全。框架结构梁柱抗震内力调整在手算一榀框架计算中是一个难点,且容易出错。为解决这一问题,可根据具体计算实例,归纳出框架梁柱抗震内力调整计算的基本步... 框架梁端剪力调整之前,应先计算控制截面内力,后进行梁端弯矩调幅,使结构更加安全。框架结构梁柱抗震内力调整在手算一榀框架计算中是一个难点,且容易出错。为解决这一问题,可根据具体计算实例,归纳出框架梁柱抗震内力调整计算的基本步骤和方法,计算出在框架梁端弯矩正负号判别、弯矩最不利组合、最大剪力设计值确定等位置容易出现错误,并结合实例予以纠正。框架柱的抗震内力调整顺序是先进行“强柱弱梁”的调整,再进行“强剪弱弯”的调整,中柱在进行“强柱弱梁”的内力调整时,因其需要同时考虑节点左右梁端的弯矩,节点上下柱的线刚度,计算量大,采用柱端弯矩增大系数的简化计算方法,简单明了,误差很小,对边柱同样适用。 展开更多
关键词 框架结构 内力调整 柱端弯矩增大系数
下载PDF
基于转动摩擦铰阻尼器的干式装配梁-柱节点抗震性能试验 被引量:1
20
作者 申允 夏成建 +1 位作者 陈强 王昊祥 《地震研究》 CSCD 北大核心 2024年第1期105-113,共9页
基于转动摩擦铰阻尼器(RFHD),提出了转动摩擦耗能干式装配梁-柱节点(DRFDBJ)。为了验证DRFDBJ结构对于实现预期力学性能的可行性和合理性,以施加在摩擦片表面的螺栓预紧力(P_(c))为变量,开展了2个工况下的DRFDBJ试件低周往复拟静力试验... 基于转动摩擦铰阻尼器(RFHD),提出了转动摩擦耗能干式装配梁-柱节点(DRFDBJ)。为了验证DRFDBJ结构对于实现预期力学性能的可行性和合理性,以施加在摩擦片表面的螺栓预紧力(P_(c))为变量,开展了2个工况下的DRFDBJ试件低周往复拟静力试验研究。结果表明:DRFDBJ结构的力学性能主要由RFHD提供并控制,试验中节点呈现了稳定的承载力和理想的变形、耗能能力,并实现了预期的损伤集中;2个不同P_(c)水准下节点承载力的试验值与理论值误差不超过5%,通过调整P_(c)可实现节点承载力的调控,为DRFDBJ结构承载力的可调控提供了支撑。 展开更多
关键词 装配式框架结构 干式装配梁-柱节点 转动摩擦阻尼器 摩擦阻尼器
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部