In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically....In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation.展开更多
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wal...In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wall were divided into fiber elements,and PERFORM-3D finite element analysis software was used to carry out push-over analysis on the test specimens.The results show that the finite element analysis results were in good agreement with the experimental results.The proposed analysis method could perform elasto-plastic analysis on the high-strength concrete shear wall with boundary columns without distinguishing the categories of frame column and shear wall.The seismic performance of high-strength concrete shear wall with boundary columns was analyzed using the following parameters:axis compression ratio,height to width ratio,ratio of vertical reinforcement,and ratio of longitudinal reinforcement in the boundary column.The results show that the increase in the axial compression ratio causes the bearing capacity of the shear wall to increase at first and then to decrease and causes the ductility to decrease.The increase in the height to width ratio causes the bearing capacity of the shear wall to decrease and its ductility to increase.The ratio of vertical reinforcement was found to have little effect on the bearing capacity and ductility.The increase in the ratio of longitudinal reinforcement in boundary column resulted in a significant increase in the bearing capacity and caused the ductility to decrease at first and then to slowly increase.展开更多
This study evaluated Life-Cycle Assessment(LCA)of two different designs of high-performance concrete beam:(1)a single-layer beam(SLB)that consisted of steelfibered high-strength concrete in both the compression and ten...This study evaluated Life-Cycle Assessment(LCA)of two different designs of high-performance concrete beam:(1)a single-layer beam(SLB)that consisted of steelfibered high-strength concrete in both the compression and tensile zones and(2)a two-layer beam(TLB)that consisted of steelfibered high-strength concrete and normal-strength concrete in the compression and tensile zones,respectively.The SLB and steelfibered high-strength concrete layer of the TLB were of the same concrete class C70/85.LCAs of the SLB and TLB were conducted using the ReCiPe2016 mid-point and endpoint-single-score methods.The difference between the two endpoint-single-score results was evaluated using a two-stage nested analysis of variance.The ReCiPe2016 midpoint results showed that replacing the SLB with the TLB reduces the environmental impact of global warming potential,terrestrial ecotoxicity,water consumption,and scarcity of fossil resources by 15%,17%,11%,and 17%,respec-tively.The ReCiPe2016 endpoint-single-score results showed that the environmental damage from the TLB compared to the SLB was statistically reduced(p=0.0256).Therefore,considering two different designs of steelfibered high-strength concrete beams,the TLB design was found environmentally preferable to SLB design on both,midpoint and endpoint-single-score evaluations.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
In this paper, the flexural, split tensile, impact and fatigue performance of steel fiberreinforced silica fume high-strength concrete (SIFUMHSC) under static and dynamic loadsare studied. The effect of the amount of ...In this paper, the flexural, split tensile, impact and fatigue performance of steel fiberreinforced silica fume high-strength concrete (SIFUMHSC) under static and dynamic loadsare studied. The effect of the amount of silica fume on its performance, the strengtheningeffects of silica fume particle artd steel fiber afld their composite effect are discussed. Testresults indicate to a full extent that different amounts of silica fume substituting for cementcan remarkably improve the static and dynamic mechanical behaviour of steel fiberr einforcedSIFUMHSC with other conditions unchanged and that the main reason for the change is thatthe addition of silica fume brings about a double interfacial strengthening effect of fiber-cement matrix and aggregate-cement matrix, thus improving the structure and characteristicsof the interface. When the addition of silica fume is adequate, the H_v-d, I_a-d and CHAS--dcurves tend to be horizontal, with differences disappearing between the interfacial layer andmatrix, so that the size and number of crack sources in the interfacial zone and the wholematrix become smaller and less, and strengthening effects are better deve1oped. This is thekey to the desired performance of steel fiber reinforced SIFUMHSC.展开更多
基金the Natural Science Foundation of Shandong Province[Grant Nos.ZR2015EQ017,ZR2018MEE044]the Key Laboratory Open Project of the Ministry of Education of Beijing University of Technology[Grant No.2020B03].
文摘In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.
基金supported by the National Natural Science Foundation of China(No.51708209)Hunan Provincial Natural Science Foundation of China(No.2019JJ50209)National Student‘s Program for Innovation and Entrepreneurship(No.201912658001)。
文摘In this study,an experimental study and numerical calculations using fiber model were conducted for four high-strength concrete shear walls with boundary columns under low cyclic load.The boundary column and shear wall were divided into fiber elements,and PERFORM-3D finite element analysis software was used to carry out push-over analysis on the test specimens.The results show that the finite element analysis results were in good agreement with the experimental results.The proposed analysis method could perform elasto-plastic analysis on the high-strength concrete shear wall with boundary columns without distinguishing the categories of frame column and shear wall.The seismic performance of high-strength concrete shear wall with boundary columns was analyzed using the following parameters:axis compression ratio,height to width ratio,ratio of vertical reinforcement,and ratio of longitudinal reinforcement in the boundary column.The results show that the increase in the axial compression ratio causes the bearing capacity of the shear wall to increase at first and then to decrease and causes the ductility to decrease.The increase in the height to width ratio causes the bearing capacity of the shear wall to decrease and its ductility to increase.The ratio of vertical reinforcement was found to have little effect on the bearing capacity and ductility.The increase in the ratio of longitudinal reinforcement in boundary column resulted in a significant increase in the bearing capacity and caused the ductility to decrease at first and then to slowly increase.
文摘This study evaluated Life-Cycle Assessment(LCA)of two different designs of high-performance concrete beam:(1)a single-layer beam(SLB)that consisted of steelfibered high-strength concrete in both the compression and tensile zones and(2)a two-layer beam(TLB)that consisted of steelfibered high-strength concrete and normal-strength concrete in the compression and tensile zones,respectively.The SLB and steelfibered high-strength concrete layer of the TLB were of the same concrete class C70/85.LCAs of the SLB and TLB were conducted using the ReCiPe2016 mid-point and endpoint-single-score methods.The difference between the two endpoint-single-score results was evaluated using a two-stage nested analysis of variance.The ReCiPe2016 midpoint results showed that replacing the SLB with the TLB reduces the environmental impact of global warming potential,terrestrial ecotoxicity,water consumption,and scarcity of fossil resources by 15%,17%,11%,and 17%,respec-tively.The ReCiPe2016 endpoint-single-score results showed that the environmental damage from the TLB compared to the SLB was statistically reduced(p=0.0256).Therefore,considering two different designs of steelfibered high-strength concrete beams,the TLB design was found environmentally preferable to SLB design on both,midpoint and endpoint-single-score evaluations.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, the flexural, split tensile, impact and fatigue performance of steel fiberreinforced silica fume high-strength concrete (SIFUMHSC) under static and dynamic loadsare studied. The effect of the amount of silica fume on its performance, the strengtheningeffects of silica fume particle artd steel fiber afld their composite effect are discussed. Testresults indicate to a full extent that different amounts of silica fume substituting for cementcan remarkably improve the static and dynamic mechanical behaviour of steel fiberr einforcedSIFUMHSC with other conditions unchanged and that the main reason for the change is thatthe addition of silica fume brings about a double interfacial strengthening effect of fiber-cement matrix and aggregate-cement matrix, thus improving the structure and characteristicsof the interface. When the addition of silica fume is adequate, the H_v-d, I_a-d and CHAS--dcurves tend to be horizontal, with differences disappearing between the interfacial layer andmatrix, so that the size and number of crack sources in the interfacial zone and the wholematrix become smaller and less, and strengthening effects are better deve1oped. This is thekey to the desired performance of steel fiber reinforced SIFUMHSC.