期刊文献+
共找到309篇文章
< 1 2 16 >
每页显示 20 50 100
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
1
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
2
作者 Xuelin Wang Zhenjia Xie +1 位作者 Xiucheng Li Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1298-1310,共13页
High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of disloc... High-strength steels are mainly composed of medium-or low-temperature microstructures,such as bainite or martensite,with coherent transformation characteristics.This type of microstructure has a high density of dislocations and fine crystallographic structural units,which ease the coordinated matching of high strength,toughness,and plasticity.Meanwhile,given its excellent welding perform-ance,high-strength steel has been widely used in major engineering constructions,such as pipelines,ships,and bridges.However,visual-ization and digitization of the effective units of these coherent transformation structures using traditional methods(optical microscopy and scanning electron microscopy)is difficult due to their complex morphology.Moreover,the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty.This article reviews the latest progress in microstructural visualization and digitization of high-strength steel,with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding.We obtained the crystallographic data(Euler angle)of the transformed microstruc-tures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship(OR)during con-tinuous cooling transformation.Furthermore,visualization of crystallographic packets,blocks,and variants based on actual OR and digit-ization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters,thereby providing reverse design guidance for the development of high-strength steel. 展开更多
关键词 high-strength steel MICROSTRUCTURE VISUALIZATION DIGITIZATION quantification mechanical properties
下载PDF
Deep decalcification of factory-provided freezing acidolysis solution to achieveα-high-strength gypsum
3
作者 Wencai Ye Yulu Li +3 位作者 Yonggang Dong Lin Yang Yun Yi Jianxin Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期143-151,共9页
The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,... The freezing acidolysis solution of the nitric acid-phosphate fertilizer process has a high calcium content,which makes it difficult to produce fine phosphate and high water-soluble phosphate fertilizer products.Here,based on the potential crystallization principle of calcium sulfate in NH_(4)NO_(3)-H_(3)PO_(4)-H_(2)O,the deep decalcification(i.e.calcium removal)technology to achieveα-high-strength gypsum originated from freezing acidolysis-solutions has been firstly proposed and investigated.Typically,calcium can be removed from the factory-provided freezing acidolysis-solution by neutralizing it with ammonia,followed by the addition of ammonium sulfate solution.As a result,the formation of calcium sulfate in the reaction system undergoes the nucleation and growth of CaSO_(4)·2H_(2)O(DH),as well as its dissolution and crystallization into short columnarα-CaSO_(4)·0.5H_(2)O(α-HH).Remarkably,with the molar ratio of SO_(4)^(2-)/Ca^(2+)at 1.8,the degree of neutralization(NH_(3)/HNO_(3) molar ratio)at 1.7,the reaction temperature of 94℃,and the reaction time of 300 min,the decalcification rate can reach 86.89%,of which the high-strengthα-CaSO_(4)·0.5H_(2)O(α-HH)will be obtained.Noteworthy,the deep decalcification product meets the standards for the production of fine phosphates and highly water-soluble phosphate fertilizers.Consequently,the 2 h flexural strength ofα-HH is 5.3 MPa and the dry compressive strength is 36.8 MPa,which is up to the standard of commercialα-HH. 展开更多
关键词 Nitrophosphate Ammonia neutralization Deep decalcification high-strengthα-hemihydrate gypsum Controlled crystallization at atmospheric pressure
下载PDF
Study on Fracture Delay of High-Strength Bolts in Road Bridge Maintenance
4
作者 Rongpeng Xu 《Journal of Architectural Research and Development》 2024年第5期1-6,共6页
In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela... In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects. 展开更多
关键词 Highway bridge engineering Bridge maintenance high-strength bolts Fracture delay Maintenance recommendations
下载PDF
Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation 被引量:1
5
作者 Cheng Yao Min Wang +5 位作者 Youjin Ni Dazhi Wang Haibo Zhang Lidong Xing Jian Gong Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1716-1728,共13页
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib... The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break. 展开更多
关键词 high-strength steel traveling-wave magnetic field dendrite growth numerical simulation
下载PDF
Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy 被引量:1
6
作者 Hao Chen Yanmei Yang +7 位作者 Conglin Hu Gang Zhou Hui Shi Genzhi Jiang Yuanding Huang Norbert Hort Weidong Xie Guobing Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2397-2410,共14页
The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rat... The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine.Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s^(-1).Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress.The constitutive equation and processing maps of the alloy were obtained and analyzed.The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction(EBSD).The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures(approximately 1.57μm).The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased.By contrast,dislocation density and texture intensity decreased.Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s-1.Most grains with{0001}planes tilted away from the compression direction(CD)gradually.In addition,when the strain rate decreased,the recrystallization degree and average grain size increased.Meanwhile,the dislocation density decreased.Texture appeared to be insensitive to the strain rate.These findings provide valuable insights into the hot compression behavior,microstructural evolution,and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy,contributing to the understanding of its processing-microstructure-property relationships. 展开更多
关键词 high-strength Mg alloy conventional extrusion fine grains hot deformation behavior constitutive relationship microstructural evolution
下载PDF
Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review 被引量:1
7
作者 Jing Ni Li Jin +5 位作者 Jian Zeng Jing Li Fulin Wang Fenghua Wang Shuai Dong Jie Dong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期1-14,共14页
High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-p... High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time. 展开更多
关键词 high-strength and ignition-proof Mg alloys High temperature oxidation Oxide film Second phases ALLOYING
下载PDF
Microstructure Distribution Characteristics of High-Strength Aluminum Alloy Thin-Walled Tubes during Multi-Passes Hot Power Backward Spinning Process
8
作者 Yuan Tian Ranyang Zhang +1 位作者 Gangyao Zhao Zhenghua Guo 《Journal of Materials Science and Chemical Engineering》 2023年第7期114-121,共8页
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro... The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. . 展开更多
关键词 Cast high-strength Aluminum Alloy Tube Multi-Pass Hot Power Backward Spinning FE Simulation Microstructure Evolution
下载PDF
尾矿陶粒制备技术要点分析及应用研究进展 被引量:1
9
作者 王今华 张茂亮 +4 位作者 白坡 殷会玲 张焕焕 万欣娣 张冰 《新型建筑材料》 2024年第8期7-12,共6页
尾矿是矿石经选矿后排放的固体废弃物,其堆存规模越来越大,不仅占用土地,还会造成严重的环境污染和资源浪费。对尾矿陶粒的制备技术进行了系统的介绍和技术要点分析,探讨了原料配比、辅料、烧制工艺对陶粒性能的影响,提出了陶粒制备存... 尾矿是矿石经选矿后排放的固体废弃物,其堆存规模越来越大,不仅占用土地,还会造成严重的环境污染和资源浪费。对尾矿陶粒的制备技术进行了系统的介绍和技术要点分析,探讨了原料配比、辅料、烧制工艺对陶粒性能的影响,提出了陶粒制备存在的问题和解决途径,介绍了尾矿陶粒在轻质混凝土、水处理滤料、陶粒支撑剂、吸波材料等方面的应用,提出了轻质、多孔、高强尾矿陶粒、复合尾矿陶粒制备技术和拓宽陶粒应用领域是尾矿陶粒未来的主要研究方向。 展开更多
关键词 尾矿 制备技术 轻质 高强 复合尾矿陶粒
下载PDF
高强度铝合金碗头挂板的开发与性能研究
10
作者 王泽禹 杨达 +3 位作者 邵星海 迟鹏 林森 王海龙 《铸造》 CAS 2024年第10期1401-1406,共6页
基于铝铜系合金和T5热处理工艺,采用砂型铸造技术进行了高强度铝合金碗头挂板的开发与性能研究。结果表明,铝合金碗头挂板铸件表面光洁,外观良好,内部无缩松、缩孔、气孔和渣眼等铸造缺陷,尺寸满足产品要求,而质量仅为铸钢碗头挂板的32... 基于铝铜系合金和T5热处理工艺,采用砂型铸造技术进行了高强度铝合金碗头挂板的开发与性能研究。结果表明,铝合金碗头挂板铸件表面光洁,外观良好,内部无缩松、缩孔、气孔和渣眼等铸造缺陷,尺寸满足产品要求,而质量仅为铸钢碗头挂板的32.5%。铝合金材料的硬度为HB107,抗拉强度为483 MPa,屈服强度为317 MPa,伸长率13.5%,具有良好的强度和韧性,样件通过标称破坏载荷型式试验,最大破坏载荷在129 kN以上,能够满足碗头挂板的使用要求。 展开更多
关键词 铝铜合金 高强度 碗头挂板 轻量化
下载PDF
高强度木单板/异氰酸酯复合材料制备及性能优化
11
作者 邹淼 张镭 +2 位作者 唐启恒 常亮 郭文静 《林业工程学报》 CSCD 北大核心 2024年第1期45-52,共8页
通过脱除木质素的方法对木材进行前处理是制备高强度木基复合材料的一种重要手段,然而,脱除木质素过程中会产生大量废液,且不利于工业化应用。在当前“双碳”目标以及绿色发展的背景下,探究一种低碳环保、简单高效的高强度木基复合材料... 通过脱除木质素的方法对木材进行前处理是制备高强度木基复合材料的一种重要手段,然而,脱除木质素过程中会产生大量废液,且不利于工业化应用。在当前“双碳”目标以及绿色发展的背景下,探究一种低碳环保、简单高效的高强度木基复合材料的制备方法对提升木材附加值显得尤为重要。基于此,以桦木单板和聚合二苯基甲烷二异氰酸酯(pMDI)为原材料,采用正交试验研究热压温度、热压时间以及pMDI添加量对高强度木单板/异氰酸酯复合材料(pMDI-WC)的力学性能、耐水性和表面颜色的影响。结果表明,热压温度、热压时间和pMDI添加量对pMDI-WC的力学性能、耐水性和表面颜色均具有显著的影响。厚度为6 mm的pMDI-WC最佳热压温度、热压时间和pMDI添加量分别为170℃、20 min和10%,在最优工艺条件下制备出具有优异力学性能的pMDI-WC,其弯曲强度和拉伸强度分别是473.59和408.56 MPa。在热压温度180℃、热压时间20 min、pMDI添加量20%的条件下,pMDI-WC的耐水性最优。pMDI-WC不仅具有轻质高强特性,而且制备工艺简单、绿色环保,这对提高木材的高附加值利用和复合材料的绿色发展具有重要意义。 展开更多
关键词 异氰酸酯 木基复合材料 轻质高强 正交试验 制备工艺
下载PDF
Mechanical properties of calcium carbonate whisker-reinforced high-strength cement mortar 被引量:4
12
作者 张聪 曹明莉 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期331-336,共6页
In order to improve the brittleness of high-strength cement mortar,calcium carbonate(CaCO3) whiskers are incorporated to strengthen and toughen the high-strength cement mortar.The compressive strength,flexural stren... In order to improve the brittleness of high-strength cement mortar,calcium carbonate(CaCO3) whiskers are incorporated to strengthen and toughen the high-strength cement mortar.The compressive strength,flexural strength,split tensile strength and work of fracture are measured.Microstructures and micromechanical behaviors are investigated using scanning electron microscopy.The strengthening and toughening mechanisms and the efficiency of whisker-reinforced high-strength cement mortar are discussed.The results show that the addition of CaCO3 whiskers brings positive effects on the high-strength cement mortar.The strengthening and toughening mechanisms are whisker-cement coalition debonding,whisker peeling,whisker impact breakage and whisker bridging.Crack deflection is one efficient mechanism,but it is hard to be achieved in high-strength cement mortar.And the interfacial bonding strength between whiskers and the cement mortar matrix should be appropriately weak to introduce more crack deflection mechanisms to strengthen and toughen the cement mortar efficiently. 展开更多
关键词 high-strength mortar CaCO3 whisker strengthen-ing TOUGHENING
下载PDF
Effect of geometrical parameters on forming quality of high-strength TA18 titanium alloy tube in numerical control bending 被引量:6
13
作者 方军 梁闯 +1 位作者 鲁世强 王克鲁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期309-318,共10页
The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clari... The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t. 展开更多
关键词 high-strength TA18 tube geometrical parameters forming quality finite element simulation numerical control bending
下载PDF
Ultra-large aluminum shape casting:Opportunities and challenges
14
作者 Qi-gui Wang Andy Wang Jason Coryell 《China Foundry》 SCIE EI CAS CSCD 2024年第5期397-408,共12页
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp... Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings. 展开更多
关键词 ultra-large castings ALUMINUM light-weighting quality microstructure materials properties
下载PDF
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
15
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
近海风电环保轻型高强度海底光电复合缆的设计研究
16
作者 黄正宇 刘利刚 +2 位作者 陈步圣 王霄 曾远明 《电线电缆》 2024年第3期26-30,共5页
以国内某50万千瓦海上风电项目为例,介绍了项目所用三芯35 kV环保轻型高强度海底光电复合缆的关键结构设计和相关工艺控制,可为该类电缆的设计、生产和制造提供参考。
关键词 三芯 环保 轻型 高强度
下载PDF
水泥基次轻高强复合材料力学性能及应用研究
17
作者 王后裕 曹海琳 +3 位作者 刘彦泉 郭书辉 方新宇 万广通 《新型建筑材料》 2024年第1期34-38,共5页
针对某高抗力防护设施需要,研发了水泥基次轻高强复合材料,并采用XRD、SEM分析了复合材料的成分、养护与微观结构关系。结果表明,随着胶凝材料中粉煤灰掺量的增加,复合材料的力学性能提高;对于有活性掺合料的复合材料,蒸汽养护能明显提... 针对某高抗力防护设施需要,研发了水泥基次轻高强复合材料,并采用XRD、SEM分析了复合材料的成分、养护与微观结构关系。结果表明,随着胶凝材料中粉煤灰掺量的增加,复合材料的力学性能提高;对于有活性掺合料的复合材料,蒸汽养护能明显提高材料的强度;钢纤维的掺入起到了很好的阻裂效应,改善了高强复合材料的抗压性能和材料脆性,改变了破坏时的形态。采用该复合材料的受弯构件充分发挥了钢和高强水泥基材料的受力性能优势,达到了良好的组合效果,在减轻自重的同时,承载力还高出设计荷载约19%。 展开更多
关键词 水泥基次轻高强复合材料 微观结构 抗压强度 应力应变曲线 受弯构件
下载PDF
In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels 被引量:11
18
作者 Chao Gu Wen-qi Liu +1 位作者 Jun-he Lian Yan-ping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期826-834,共9页
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanism... A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions.Fatigue mechanisms were also analyzed accordingly.The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix.For the inclusions,which are tightly bonded with the steel matrix,when the Young’s modulus is larger than that of the steel matrix,the stress will concentrate inside the inclusion;otherwise,the stress will concentrate in the steel matrix.If voids exist on the interface between inclusions and the steel matrix,their effects on the fatigue process differ with their positions relative to the inclusions.The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration.The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix. 展开更多
关键词 INCLUSION high-strength bearing steel FATIGUE numerical study stress distribution
下载PDF
Toughening mechanisms of a high-strength acicular ferrite steel heavy plate 被引量:5
19
作者 Zhi-qiang Cao Yan-ping Bao +3 位作者 Zheng-hai Xia Deng Luo Ai-min Guo Kai-ming Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第5期567-572,共6页
An ultra-low carbon acicular ferrite steel heavy plate was obtained with an advanced thermo-mechanical control process-relaxed precipitation controlled transformation (TMCP-RPC) at Xiangtan Steel, Valin Group. The h... An ultra-low carbon acicular ferrite steel heavy plate was obtained with an advanced thermo-mechanical control process-relaxed precipitation controlled transformation (TMCP-RPC) at Xiangtan Steel, Valin Group. The heavy plate has a tensile strength of approximately 600 MPa with a lower yield ratio. The impact toughness of the heavy plate achieves 280 J at ?40°C. The fine-grained mixed microstructures of the heavy plate mainly consist of acicular ferrite, granular bainite, and polygonal ferrite. The high strength and excellent toughness of the heavy plate are attributed to the formation of acicular ferrite microstructure. The prevention of blocks of martensite/retained austenite (M/A) and the higher cleanness are also responsible for the superior toughness. 展开更多
关键词 high-strength STEEL MICROSTRUCTURE mechanical properties acicular ferrite
下载PDF
Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet 被引量:9
20
作者 HE Ke-zhun LI Qun +2 位作者 LIU Sheng-dan ZHANG Xin-ming ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2660-2669,共10页
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different... The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC. 展开更多
关键词 high-strength aluminum alloy PRE-STRETCHING tensile properties quench sensitive effect strengthening precipitates
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部