With the modern advancement of treatment approaches in medical science, the application of biomaterials in tissue engineering provides a remarkable opportunity to overcome graft rejection as well as proper wound heali...With the modern advancement of treatment approaches in medical science, the application of biomaterials in tissue engineering provides a remarkable opportunity to overcome graft rejection as well as proper wound healing. In this study, novel hybrid films have been synthesized by incorporation of polyvinyl alcohol (PVA), gelatin, and gelatin with glycerin along with different concentrations of pre-prepared hydroxyapatite (HAP) by solution casting method at room temperature in a biosafety cabinet. Glutaraldehyde has been added as a crosslinker in this whole procedure. Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) have been conducted to observe and compare the structural and chemical stability of the synthesized hybrid film properties. The FTIR results and X-Ray Diffraction analyses confirmed the chemical interactions between HAP, PVA, gelatin, and glycerin have occurred. The crystallinity of HAP also remains in all the prepared hybrid film samples that are observed in XRD. It is expected that these newly synthesized hybrid films could be a better opportunity for various sectors of tissue engineering such as skin, bone, tendon, and cartilage. These synthesized hybrid films can be suitable for wound healing covering. These studies could be a new scope for long-term drug delivery directly on wound sites in diabetic gangrene foot or burn patients as well as cartilage or joint replacement therapy.展开更多
Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unbl...Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unblocking and permeability improvement, while it is difficult for acid to enter microcracks.Microwave-asisted acidification may offer an alternative. In this work, XRD,^(1)H-NMR, and SEM were used to evaluate the effect of microwave-assisted acidification on the microstructure of coal. Results show that kaolinite, calcite, and dolomite can be dissolved by acid. After microwave irradiation, the graphitization of microcrystalline structure of carbon improves. Microwave-assisted acidification erodes minerals in coal and enhances the graphitization degree of microcrystalline structure. Compared to individual microwave irradiation or acidification, the pore volume and pore connectivity can be greatly enhanced by microwave-assisted acidification. The NMR permeability of coal increased by 28.05%. This study demonstrates the potential of microwave-assisted acidification for coalbed methane recovery.展开更多
为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰...为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰对水泥胶砂抗硫酸侵蚀作用的影响。实验研究表明:随着硅灰掺量的增加,水泥胶砂的抗硫酸侵蚀能力增强,XRD(x-ray diffraction)衍射表明,在硫酸侵蚀下表面生成物为二水石膏(CaSO_(4)·2H_(2)O),反应时会消耗Ca(OH)_(2),同时也会产生一定的体积膨胀;SEM(scanning electron microscope)检测表明,掺入硅灰可以提高试样的密实度,从而提高水泥胶砂的抗硫酸侵蚀性能。从宏观和微观角度综合来看,硅灰掺量为15%时的抗硫酸侵蚀性能最好。展开更多
文摘With the modern advancement of treatment approaches in medical science, the application of biomaterials in tissue engineering provides a remarkable opportunity to overcome graft rejection as well as proper wound healing. In this study, novel hybrid films have been synthesized by incorporation of polyvinyl alcohol (PVA), gelatin, and gelatin with glycerin along with different concentrations of pre-prepared hydroxyapatite (HAP) by solution casting method at room temperature in a biosafety cabinet. Glutaraldehyde has been added as a crosslinker in this whole procedure. Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) have been conducted to observe and compare the structural and chemical stability of the synthesized hybrid film properties. The FTIR results and X-Ray Diffraction analyses confirmed the chemical interactions between HAP, PVA, gelatin, and glycerin have occurred. The crystallinity of HAP also remains in all the prepared hybrid film samples that are observed in XRD. It is expected that these newly synthesized hybrid films could be a better opportunity for various sectors of tissue engineering such as skin, bone, tendon, and cartilage. These synthesized hybrid films can be suitable for wound healing covering. These studies could be a new scope for long-term drug delivery directly on wound sites in diabetic gangrene foot or burn patients as well as cartilage or joint replacement therapy.
基金supported by the National Natural Science Foundation of China (Nos. 52274195, 52274196, 51904103, and 52174180)the Science and Technology Innovation Program of Hunan Province (No. 2022RC1178)+1 种基金Hunan Provincial Natural Science Foundation of China (Nos. 2022JJ20024, and 2021JJ30254)Scientific Research Foundation of Hunan Provincial Education Department (No. 21B0465)。
文摘Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unblocking and permeability improvement, while it is difficult for acid to enter microcracks.Microwave-asisted acidification may offer an alternative. In this work, XRD,^(1)H-NMR, and SEM were used to evaluate the effect of microwave-assisted acidification on the microstructure of coal. Results show that kaolinite, calcite, and dolomite can be dissolved by acid. After microwave irradiation, the graphitization of microcrystalline structure of carbon improves. Microwave-assisted acidification erodes minerals in coal and enhances the graphitization degree of microcrystalline structure. Compared to individual microwave irradiation or acidification, the pore volume and pore connectivity can be greatly enhanced by microwave-assisted acidification. The NMR permeability of coal increased by 28.05%. This study demonstrates the potential of microwave-assisted acidification for coalbed methane recovery.
文摘为更好地研究硅灰对水泥胶砂耐硫酸侵蚀性能的影响,本文将硅灰按不同配合比进行试验,将水泥胶砂置于pH=1的硫酸侵蚀环境中。通过探究试样的外观、质量损失率、抗压强度损失率、硫酸侵蚀下的生成物、微观结构,并结合相关理论分析了硅灰对水泥胶砂抗硫酸侵蚀作用的影响。实验研究表明:随着硅灰掺量的增加,水泥胶砂的抗硫酸侵蚀能力增强,XRD(x-ray diffraction)衍射表明,在硫酸侵蚀下表面生成物为二水石膏(CaSO_(4)·2H_(2)O),反应时会消耗Ca(OH)_(2),同时也会产生一定的体积膨胀;SEM(scanning electron microscope)检测表明,掺入硅灰可以提高试样的密实度,从而提高水泥胶砂的抗硫酸侵蚀性能。从宏观和微观角度综合来看,硅灰掺量为15%时的抗硫酸侵蚀性能最好。