Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s...Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.展开更多
Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr e...Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr exhibited ignition temperatures of 1270–1320 K.As a result of EDS measurement,Sr was found to be concentrated in the Y_(2)O_(3)film.In addition,a mixed film of MgO and Sr O formed on the outer layer in the 1.5 at.%Sr-containing Mg_(97)Zn_(1)Y_(2)alloy.These findings suggest that the uniform and thin Y_(2)O_(3)film that maintains high soundness at high temperatures was formed owing to valence control and the formation of a protective outer oxide film.展开更多
An inorganic potassium silicate coating with pigments of alumina,aluminum phosphate,NiCrAlY and copper chromite black was prepared on CB2 stainless steel.Oxidation behavior in either ambient air or O_(2)+H_(2) O mixtu...An inorganic potassium silicate coating with pigments of alumina,aluminum phosphate,NiCrAlY and copper chromite black was prepared on CB2 stainless steel.Oxidation behavior in either ambient air or O_(2)+H_(2) O mixture at 630℃ for 2000 h was comparatively studied,and the coating exhibited excellent resistance under both test conditions.The water vapor considerably accelerated the oxidation of the uncoated CB2 steel,as the hydroxide,the main constituent of the coating,had a negligible evaporation rate at test temperature,while it had a limited effect on the coated sample.Meanwhile,the existence of coating may prolong or eliminate the incubation period in the O_(2)+H_(2) O mixture at 630℃.After oxidation,the coating matrix is in an amorphous state and fillers as alumina and copper chromite black are stable in the coating.Leucite(KAlSi_(2) O_(6))formed by Al from NiCrAlY and potassium silicate in the coatings was detected after tests either in O_(2) or O_(2)+H_(2) O mixture.展开更多
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi...Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT.展开更多
The doping of functionalized graphene oxide(GO)in the membranes becomes a promising method for improving the performance of high-temperature proton exchange membrane fuel cells(HT-PEMFC).Phosphonated graphene oxide(PG...The doping of functionalized graphene oxide(GO)in the membranes becomes a promising method for improving the performance of high-temperature proton exchange membrane fuel cells(HT-PEMFC).Phosphonated graphene oxide(PGO)with a P/O ratio of 8.5%was quickly synthesised by one-step electrochemical exfoliation based on a three-dimensiaonal(3D)printed reactor and natural graphite flakes.Compared with the GO prepared by the two-step electrochemical exfoliation method,the PGO synthesized by the one-step electrochemical exfoliation can better improve the performance of the membrane-electrode-assembly(MEA)based on the polybenzimidazole(PBI)membrane in the HTPEMFC.The doping of 1.5 wt%GO synthesised by electrochemical exfoliation with the 2-step method or reactor method in PBI increased the peak power density by 17.4%or 35.4%compared to MEA based on pure PBI membrane at 150℃,respectively.In addition,the doping of PGO in PBI improves its durability under accelerated stress test(AST).展开更多
High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials h...High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature o...To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.展开更多
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
Austenitic stainless steel Cr20 Ni12 Si2 RE was developed for use in hot-end components of automobile exhaust systems,especially in automobiles designed according to the China VI emission standard. The hightemperature...Austenitic stainless steel Cr20 Ni12 Si2 RE was developed for use in hot-end components of automobile exhaust systems,especially in automobiles designed according to the China VI emission standard. The hightemperature oxidation kinetic curve of Cr20 Ni12 Si2 RE at 1 050 ℃ was obtained using the weighting method. The oxidation curves exhibit the parabolic law at 1 050 ℃; after 250 h of oxidation,the mass gain was 22 g/m^2. The morphology,structure,and composition of the oxide film were examined using scanning electron microscopy and Xray diffraction methods. A thin,stable,and dense spinel oxide film obtained after 250 h of oxidation at 1 050 ℃ was mainly composed of( Mn_(0.87)Fe_(0.13))( Mn_(0.13)Fe_(0.87)Cr) O_4 and Cr_2 O_3 with a silicon-containing oxide underneath. The addition of rare earth elements was found to restrict further diffusion of metallic atoms from the austenite toward the oxide film,and consequently,led to a low growth rate of the oxide film. The inner silicon-containing oxide was produced by the diffusion of oxygen atoms and enhanced the coherent strength of the oxide film.展开更多
AIM:To evaluate the effects of estrogen(E2) on systemic and splanchnic hyperdynamic circulation in portal hypertensive rats.METHODS:Fifty castrated female Sprague-Dawley rats were divided into five groups:sham operati...AIM:To evaluate the effects of estrogen(E2) on systemic and splanchnic hyperdynamic circulation in portal hypertensive rats.METHODS:Fifty castrated female Sprague-Dawley rats were divided into five groups:sham operation(SO),partial portal vein ligation(PPVL) + placebo(PLAC),PPVL + E2,PPVL + ICI and PPVL + E2 + ICI. Hemodynamic measurements were performed using ultrasonography. Mesenteric arteriole contractility in response to norepinephrine was determined using a vessel perfusion system. Oxidative stress in the mesenteric artery was investigated by in situ detection of the superoxide anion(O2) and hydrogen peroxide(H2O2) concentrations.RESULTS:Treatment with E2 resulted in a significant decrease of portal pressure(P < 0.01) and portal venous inflow(P < 0.05),and higher systemic vascular resistance(P < 0.05) and splanchnic arteriolar resistance(P < 0.01) in PPVL + E2 rats compared to PPVL+ PLAC rats. In the mesenteric arterioles of PPVL +E2 rats,the dose-response curve was shifted left,and the EC50was decreased(P < 0.01). E2 reduced O2 production and H2O2concentration in the mesenteric artery. However,ICI182,780 reversed the beneficial effects of E2,therefore,the systemic and splanchnic hyperdynamic circulation were more deteriorated in ICI182,780-treated rats.CONCLUSION:Treatment with estrogen improved the systemic and splanchnic hyperdynamic circulation in PPVL rats,in part due to the alleviation of oxidative stress.展开更多
BACKGROUND: Nitric oxide (NO) and prostacyclin (PGI(2)) are both powerful vasoactive substances correlated with the hyperhemodynamics of portal hypertension (PHT), a common syndrome characterized by a pathological inc...BACKGROUND: Nitric oxide (NO) and prostacyclin (PGI(2)) are both powerful vasoactive substances correlated with the hyperhemodynamics of portal hypertension (PHT), a common syndrome characterized by a pathological increase in portal venous pressure. The purpose of the present study was to evaluate the possible interaction between these two endothelial vasodilators, together with their respective roles in the hyperdynamic splanchnic circulation of PHT. METHODS: Ninety-six male Sprague-Dawley rats were randomly divided into three groups: intrahepatic portal hypertension (IHPH) induced by injection of CCI4 (n=31), prehepatic portal hypertension (PHPH) induced by partial stenosis of the portal vein (n=33), and sham-operated controls (SO) (n=32). Animals of each group received indomethacin (INDO), a cyclooxygenase (COX) inhibitor, either short-term (7 days) or long-term (15 days), with saline as control. Free portal pressure (FPP), together with the concentration of NO and PGI(2) in serum were measured. The activity of constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) in the abdominal aorta and small intestine were determined by spectrophotometry. RT-PCR was performed to measure the levels of cNOS and iNOS mRNA in the arteries and small intestines. RESULTS: Compared with SO rats, the concentrations of NO and PGI(2) in PHT rats were elevated, which were consistent with the increased FPP (P<0.05). Although administration of INDO persistently decreased the concentration of PGI(2) in serum (P<0.05), the long-term INDO-treated IHPH and PHPH groups had restored splanchnic hyperdynamic circulation, demonstrated by the enhanced FPP (P<0.05). Furthermore, the changes of dynamic circulatory state in both IHPH and PHPH rats were concomitant with the expression and activity of iNOS and the concentration of NO (P<0.05). Although the expression and activity of cNOS in abdominal aorta of PHT rats were higher than in SO rats (P<0.05), there was no difference in small intestinal tissues between PHT and SO rats (P>0.05). Moreover, the changes of iNOS activity and mRNA expression were more marked than cNOS in PHT rats, and there was no difference in expression and activity of cNOS between PHT rats treated by short- and long-term INDO (P>0.05). CONCLUSIONS: iNOS plays an important role in the hemodynamic abnormalities of PHT induced by overproduction of NO. There is a possible interaction between PGI(2) and NO in hyperbemodynamics of PHT, but PGI(2) may not be a mediator in the formation and development of the hyperdynamic circulatory state in PHT rats.展开更多
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva...Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.展开更多
Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and d...Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and distinguishing different forms of nitrogen in the water.The TDN in various systems has been largely documented,and the concentrations of TDN are usually obtained using high-temperature catalytic(HTC) or persulfate oxidation(PO).However,the accuracy of these methods and their suitability for all types of natural waters are still unclear.To explore both methods in-depth,assorted samples were tested,including eight solutions composed of nitrogen-containing compounds(3 dissolved inorganic nitrogen fractions:NO_(3)^(-),NO_(2)^(-)and NH_(4)^(+);5 organic compounds:EDTA-2Na,vitamin B1,vitamin B12,amino acids,and urea) and 105 natural waters which were collected from an open ocean(Northwest Pacific Ocean,28),a marginal sea(Yellow Sea,34),an estuary(Huanghe River mouth,31),rivers(Huanghe River,4;Licun River,4),and precipitations(4 samples).The results showed that heterocycles and molecular dimensions had certain effects on the oxidation efficiency of the PO method but had little effect on HTC.There was no significant difference between the two methods for natural waters,but HTC was more suitable for deep-sea samples with low TDN concentrations(less than 10 μmol/L) and low organic activity.Overall,HTC has a relatively simple measurement process,a high degree of automation,and low error.Therefore,HTC can be recommended to determine the TDN of samples in freshwater and seawater.展开更多
Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature,...Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).展开更多
The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The result...The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The results indicate that high-temperature aging accelerates the dehydration of Sn(OH)_(4)in the pre-existing native oxide film to form SnO_(2)and facilitates the oxidation of fresh Sn substrate, resulting in the gradual increase in oxide film thickness and surface roughness with prolonging aging time. However, the corrosion resistance of the film initially is enhanced and then deteriorated with an extending aging time. Besides, the formation and evolution mechanisms of the oxide film with aging time were discussed.展开更多
Objective: To study the correlation of maternal - placental circulation ultrasound parameters with placental hypoxia and oxidative stress in patients with preeclampsia. Methods: Patients with preeclampsia who gave bir...Objective: To study the correlation of maternal - placental circulation ultrasound parameters with placental hypoxia and oxidative stress in patients with preeclampsia. Methods: Patients with preeclampsia who gave birth in Shandong jiaotong hospital between March 2015 and February 2017 were select as the PE group of the study, and the healthy pregnant women who gave birth in the hospital during the same period were selected as the control group of the study. Color Doppler ultrasonography was done in the 23-26 weeks of pregnancy to determine the uterine spiral artery PI, RI and S/D levels;after delivery, the placenta was collected to determine the expression of hypoxia-induced apoptosis indexes, cell invasion molecules and oxidative stress molecules. Results: Uterine spiral artery PI, RI and S/D levels of PE group were significantly higher than those of control group;TXNIP, NLRP3, ASC, Caspase-1, Nrf-2, HO-1 and NQO-1 mRNA expression in placenta tissue of PE group were significantly higher than those of control group and positively correlated with uterine spiral artery PI, RI and S/D levels while CatL, CatB, uPA and LAMA4 mRNA expression were significantly lower than those of control group and negatively correlated with uterine spiral artery PI, RI and S/D levels. Conclusion: The increase of maternal - placental circulation blood resistance in patients with preeclampsia will result in the placental hypoxia, and aggravate the apoptosis and oxidative stress.展开更多
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金the National Major Science and Technology Projects of China(Nos.J2019-VII-0010-0150 and J2019-VI-0009-0123)National Natural Science Foundation of China(Nos.52022011 and 52090041)+3 种基金Beijing Nova Program(No.Z211100002121170)Science Center for Gas Turbine Project(No.P2021-A-IV-001-002)Science and Technology on Advanced High Temperature Structural Materials Laboratory(No.6142903210306)Xiaomi Young Scholars Program.
文摘Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.
基金supported by Grants-in-Aid for Scientific Research C(JP21K04693)from JSPS,Japan。
文摘Mg_(97)Zn_(1)Y_(2)alloys with high ignition temperatures were developed by adding Sr.The addition of Sr resulted in the formation of a uniform and thin Y_(2)O_(3)film.Mg–Zn–Y alloys containing at least 0.25 at.%Sr exhibited ignition temperatures of 1270–1320 K.As a result of EDS measurement,Sr was found to be concentrated in the Y_(2)O_(3)film.In addition,a mixed film of MgO and Sr O formed on the outer layer in the 1.5 at.%Sr-containing Mg_(97)Zn_(1)Y_(2)alloy.These findings suggest that the uniform and thin Y_(2)O_(3)film that maintains high soundness at high temperatures was formed owing to valence control and the formation of a protective outer oxide film.
基金financially supported by the National Natural Science Foundation of China(No.52001142).
文摘An inorganic potassium silicate coating with pigments of alumina,aluminum phosphate,NiCrAlY and copper chromite black was prepared on CB2 stainless steel.Oxidation behavior in either ambient air or O_(2)+H_(2) O mixture at 630℃ for 2000 h was comparatively studied,and the coating exhibited excellent resistance under both test conditions.The water vapor considerably accelerated the oxidation of the uncoated CB2 steel,as the hydroxide,the main constituent of the coating,had a negligible evaporation rate at test temperature,while it had a limited effect on the coated sample.Meanwhile,the existence of coating may prolong or eliminate the incubation period in the O_(2)+H_(2) O mixture at 630℃.After oxidation,the coating matrix is in an amorphous state and fillers as alumina and copper chromite black are stable in the coating.Leucite(KAlSi_(2) O_(6))formed by Al from NiCrAlY and potassium silicate in the coatings was detected after tests either in O_(2) or O_(2)+H_(2) O mixture.
基金funding support from the National Natural Science Foundation of China (32072024)the Fundamental Research Funds for the Central Universities (2021ZKPY019)the National Key Research and Development Program of China (2018YFD0100403, 2016YFD0101402)。
文摘Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT.
基金financially supported by the UK Research Council EPSRC EP/009050/1。
文摘The doping of functionalized graphene oxide(GO)in the membranes becomes a promising method for improving the performance of high-temperature proton exchange membrane fuel cells(HT-PEMFC).Phosphonated graphene oxide(PGO)with a P/O ratio of 8.5%was quickly synthesised by one-step electrochemical exfoliation based on a three-dimensiaonal(3D)printed reactor and natural graphite flakes.Compared with the GO prepared by the two-step electrochemical exfoliation method,the PGO synthesized by the one-step electrochemical exfoliation can better improve the performance of the membrane-electrode-assembly(MEA)based on the polybenzimidazole(PBI)membrane in the HTPEMFC.The doping of 1.5 wt%GO synthesised by electrochemical exfoliation with the 2-step method or reactor method in PBI increased the peak power density by 17.4%or 35.4%compared to MEA based on pure PBI membrane at 150℃,respectively.In addition,the doping of PGO in PBI improves its durability under accelerated stress test(AST).
基金This work was financially supported by the National Natural Science Foundation of China(No.52071014)the Fundamental Research Funds for the Central Universities(No.FRF-GF-19-033BZ)the National Key Research and Development Program of China(No.2020YFB0704501).
文摘High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金This work was financially supported by the Science&Technology Department of Sichuan Province,China(No.2017KJT0110).
文摘To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
文摘Austenitic stainless steel Cr20 Ni12 Si2 RE was developed for use in hot-end components of automobile exhaust systems,especially in automobiles designed according to the China VI emission standard. The hightemperature oxidation kinetic curve of Cr20 Ni12 Si2 RE at 1 050 ℃ was obtained using the weighting method. The oxidation curves exhibit the parabolic law at 1 050 ℃; after 250 h of oxidation,the mass gain was 22 g/m^2. The morphology,structure,and composition of the oxide film were examined using scanning electron microscopy and Xray diffraction methods. A thin,stable,and dense spinel oxide film obtained after 250 h of oxidation at 1 050 ℃ was mainly composed of( Mn_(0.87)Fe_(0.13))( Mn_(0.13)Fe_(0.87)Cr) O_4 and Cr_2 O_3 with a silicon-containing oxide underneath. The addition of rare earth elements was found to restrict further diffusion of metallic atoms from the austenite toward the oxide film,and consequently,led to a low growth rate of the oxide film. The inner silicon-containing oxide was produced by the diffusion of oxygen atoms and enhanced the coherent strength of the oxide film.
文摘AIM:To evaluate the effects of estrogen(E2) on systemic and splanchnic hyperdynamic circulation in portal hypertensive rats.METHODS:Fifty castrated female Sprague-Dawley rats were divided into five groups:sham operation(SO),partial portal vein ligation(PPVL) + placebo(PLAC),PPVL + E2,PPVL + ICI and PPVL + E2 + ICI. Hemodynamic measurements were performed using ultrasonography. Mesenteric arteriole contractility in response to norepinephrine was determined using a vessel perfusion system. Oxidative stress in the mesenteric artery was investigated by in situ detection of the superoxide anion(O2) and hydrogen peroxide(H2O2) concentrations.RESULTS:Treatment with E2 resulted in a significant decrease of portal pressure(P < 0.01) and portal venous inflow(P < 0.05),and higher systemic vascular resistance(P < 0.05) and splanchnic arteriolar resistance(P < 0.01) in PPVL + E2 rats compared to PPVL+ PLAC rats. In the mesenteric arterioles of PPVL +E2 rats,the dose-response curve was shifted left,and the EC50was decreased(P < 0.01). E2 reduced O2 production and H2O2concentration in the mesenteric artery. However,ICI182,780 reversed the beneficial effects of E2,therefore,the systemic and splanchnic hyperdynamic circulation were more deteriorated in ICI182,780-treated rats.CONCLUSION:Treatment with estrogen improved the systemic and splanchnic hyperdynamic circulation in PPVL rats,in part due to the alleviation of oxidative stress.
基金a grant from the KeyBasic Research Program of Shanghai(No.034119922)
文摘BACKGROUND: Nitric oxide (NO) and prostacyclin (PGI(2)) are both powerful vasoactive substances correlated with the hyperhemodynamics of portal hypertension (PHT), a common syndrome characterized by a pathological increase in portal venous pressure. The purpose of the present study was to evaluate the possible interaction between these two endothelial vasodilators, together with their respective roles in the hyperdynamic splanchnic circulation of PHT. METHODS: Ninety-six male Sprague-Dawley rats were randomly divided into three groups: intrahepatic portal hypertension (IHPH) induced by injection of CCI4 (n=31), prehepatic portal hypertension (PHPH) induced by partial stenosis of the portal vein (n=33), and sham-operated controls (SO) (n=32). Animals of each group received indomethacin (INDO), a cyclooxygenase (COX) inhibitor, either short-term (7 days) or long-term (15 days), with saline as control. Free portal pressure (FPP), together with the concentration of NO and PGI(2) in serum were measured. The activity of constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) in the abdominal aorta and small intestine were determined by spectrophotometry. RT-PCR was performed to measure the levels of cNOS and iNOS mRNA in the arteries and small intestines. RESULTS: Compared with SO rats, the concentrations of NO and PGI(2) in PHT rats were elevated, which were consistent with the increased FPP (P<0.05). Although administration of INDO persistently decreased the concentration of PGI(2) in serum (P<0.05), the long-term INDO-treated IHPH and PHPH groups had restored splanchnic hyperdynamic circulation, demonstrated by the enhanced FPP (P<0.05). Furthermore, the changes of dynamic circulatory state in both IHPH and PHPH rats were concomitant with the expression and activity of iNOS and the concentration of NO (P<0.05). Although the expression and activity of cNOS in abdominal aorta of PHT rats were higher than in SO rats (P<0.05), there was no difference in small intestinal tissues between PHT and SO rats (P>0.05). Moreover, the changes of iNOS activity and mRNA expression were more marked than cNOS in PHT rats, and there was no difference in expression and activity of cNOS between PHT rats treated by short- and long-term INDO (P>0.05). CONCLUSIONS: iNOS plays an important role in the hemodynamic abnormalities of PHT induced by overproduction of NO. There is a possible interaction between PGI(2) and NO in hyperbemodynamics of PHT, but PGI(2) may not be a mediator in the formation and development of the hyperdynamic circulatory state in PHT rats.
基金supported by the National Key R&D Program of China (2016YFB0100301)the National Natural Science Foundation of China (51802020, 51802019)+1 种基金the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Young Elite Scientists Sponsorship Program by CAST (2018QNRC001。
文摘Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.
基金The National Key Research and Development Project of China under contract No.2019YFC1407802the Fund of State Environmental Protection Key Laboratory of Coastal Ecosystem under contract No.202112+3 种基金the Open Fund of Key Laboratory of Marine Ecological Environment Science and EngineeringMinistry of Natural Resources under contract No.MESE-2019-06the National Natural Science Foundation of China under contract No.41876078the Shandong Provincial Natural Science Foundation of China under contract No.ZR2018MD016。
文摘Total dissolved nitrogen(TDN) is an important parameter for assessing the nutrient cycling and status of natural waters.The accurate determination of TDN in natural waters is essential for assessing its contents and distinguishing different forms of nitrogen in the water.The TDN in various systems has been largely documented,and the concentrations of TDN are usually obtained using high-temperature catalytic(HTC) or persulfate oxidation(PO).However,the accuracy of these methods and their suitability for all types of natural waters are still unclear.To explore both methods in-depth,assorted samples were tested,including eight solutions composed of nitrogen-containing compounds(3 dissolved inorganic nitrogen fractions:NO_(3)^(-),NO_(2)^(-)and NH_(4)^(+);5 organic compounds:EDTA-2Na,vitamin B1,vitamin B12,amino acids,and urea) and 105 natural waters which were collected from an open ocean(Northwest Pacific Ocean,28),a marginal sea(Yellow Sea,34),an estuary(Huanghe River mouth,31),rivers(Huanghe River,4;Licun River,4),and precipitations(4 samples).The results showed that heterocycles and molecular dimensions had certain effects on the oxidation efficiency of the PO method but had little effect on HTC.There was no significant difference between the two methods for natural waters,but HTC was more suitable for deep-sea samples with low TDN concentrations(less than 10 μmol/L) and low organic activity.Overall,HTC has a relatively simple measurement process,a high degree of automation,and low error.Therefore,HTC can be recommended to determine the TDN of samples in freshwater and seawater.
文摘Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).
基金financial support from CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences。
文摘The evolution of morphology, composition, thickness and corrosion resistance of the oxide film on pure Sn solder substrate submitted to high-temperature aging in 150 °C dry atmosphere was investigated. The results indicate that high-temperature aging accelerates the dehydration of Sn(OH)_(4)in the pre-existing native oxide film to form SnO_(2)and facilitates the oxidation of fresh Sn substrate, resulting in the gradual increase in oxide film thickness and surface roughness with prolonging aging time. However, the corrosion resistance of the film initially is enhanced and then deteriorated with an extending aging time. Besides, the formation and evolution mechanisms of the oxide film with aging time were discussed.
基金Youth Project of National Natural Science Foundation of China NO:81402153.
文摘Objective: To study the correlation of maternal - placental circulation ultrasound parameters with placental hypoxia and oxidative stress in patients with preeclampsia. Methods: Patients with preeclampsia who gave birth in Shandong jiaotong hospital between March 2015 and February 2017 were select as the PE group of the study, and the healthy pregnant women who gave birth in the hospital during the same period were selected as the control group of the study. Color Doppler ultrasonography was done in the 23-26 weeks of pregnancy to determine the uterine spiral artery PI, RI and S/D levels;after delivery, the placenta was collected to determine the expression of hypoxia-induced apoptosis indexes, cell invasion molecules and oxidative stress molecules. Results: Uterine spiral artery PI, RI and S/D levels of PE group were significantly higher than those of control group;TXNIP, NLRP3, ASC, Caspase-1, Nrf-2, HO-1 and NQO-1 mRNA expression in placenta tissue of PE group were significantly higher than those of control group and positively correlated with uterine spiral artery PI, RI and S/D levels while CatL, CatB, uPA and LAMA4 mRNA expression were significantly lower than those of control group and negatively correlated with uterine spiral artery PI, RI and S/D levels. Conclusion: The increase of maternal - placental circulation blood resistance in patients with preeclampsia will result in the placental hypoxia, and aggravate the apoptosis and oxidative stress.