High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ...The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.展开更多
A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest gra...A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.展开更多
Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming...Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.展开更多
Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infra...Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carbon-13 magnetic resonance sperctroscopy ( 13 C NMR) . Chitosan with a deacetylation degree (DD) of 76.1% was obtained at a mass ratio 0.2∶1∶1 for H_ 2 O/chitin/NaOH at 160 ℃ for 12 min. Compared to conventional solution method(usually 1∶10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M_w1.54×10 5 ) was lower than that obtained by suspension method(Y2,M_w3.34×10 5 ). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitin. It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13 C NMR showed that structures of chitosans prepared by solid-phase method were not changed.展开更多
为探究广叶绣球菌采后聚丙烯膜包装在4℃贮藏期间、热风干燥、冷冻干燥挥发性风味物质变化,采用顶空固相微萃取结合气相色谱-质谱联用技术(headspace solid phase microextraction combined with gas chromatographymass spectrometry,H...为探究广叶绣球菌采后聚丙烯膜包装在4℃贮藏期间、热风干燥、冷冻干燥挥发性风味物质变化,采用顶空固相微萃取结合气相色谱-质谱联用技术(headspace solid phase microextraction combined with gas chromatographymass spectrometry,HS-SPME-GC-MS)进行检测和分析。结果表明,新鲜的广叶绣球菌中共检测出30种挥发性物质,主要的成分为1-辛烯-3-醇、3-辛醇和反式-2-辛烯-1-醇。与鲜菇相比,聚丙烯膜包装贮藏期间挥发性风味成分的种类有所增加。鲜菇到贮藏第21 d其整体风味成分较为接近,以醇类化合物为主;而第28~49 d风味成分则以酮类和醇类化合物为主。热风干燥后检出66种挥发性物质,其中5-甲基-2-乙酰基呋喃的相对含量最高(58.693%);冷冻干燥后检出40种挥发性物质,其中以3-辛醇为主的醇类物质和以3-辛酮为主的酮类物质相对含量较高,分别为41.567%和45.723%。鲜菇经热风干燥后整体风味成分差异较大,经冷冻干燥后其整体风味较为接近。由此可知,广叶绣球菌聚丙烯膜包装贮藏28 d内能较好保持原有风味;相对于热风干燥,冷冻干燥能较好保持广叶绣球菌原有风味。本研究有助于深入了解广叶绣球菌风味特征,并根据挥发性成分变化规律可有效区分不同贮藏时期,为后续保鲜方法的改进和综合开发利用提供一定的理论基础。展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
文摘The new catalytic kinetic spectrophotometric method for Au(III) determination was developed and validated. It was based on the catalytic effect of gold on the oxidation of sudan red III by ammonium peroxodisulfate ((NH4)2S2O8) with nitrilo triacetic acid as an activator in microemulsion and H2SO4 medium. Under optimum conditions, there was the linearity of the calibration curve in the concentration range from 0 to 20 μg/L Au(Ⅲ) at 520 nm. The relative standard deviation was 3.0% with a correlation coefficient of 0.9986. The detection limit achieved was 9.75 × 10^-5 μg/mL. A new method using a column packed with sulfhydryl dextrose gel (SDG) as a solid-phase extractant has been developed for the preconcentration and separation of Au(Ⅲ) ions. The method has been applied to the determination of trace gold with satisfactory results.
基金This work was supported by the Guangdong Provincial Natural Science Foundation of China No.990781.
文摘A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.
基金Project(50972121) supported by the National Nature Science Foundation of ChinaProject(20080004) supported by the Foundation of Key Laboratory for Advanced Materials Processing Technology,Ministry of Education,China
文摘Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.
文摘Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carbon-13 magnetic resonance sperctroscopy ( 13 C NMR) . Chitosan with a deacetylation degree (DD) of 76.1% was obtained at a mass ratio 0.2∶1∶1 for H_ 2 O/chitin/NaOH at 160 ℃ for 12 min. Compared to conventional solution method(usually 1∶10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M_w1.54×10 5 ) was lower than that obtained by suspension method(Y2,M_w3.34×10 5 ). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitin. It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13 C NMR showed that structures of chitosans prepared by solid-phase method were not changed.