期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
Effect of Ru on stress rupture properties of nickel-based single crystal superalloy at high temperature 被引量:5
1
作者 史振学 李嘉荣 +2 位作者 刘世忠 王效光 岳晓岱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2106-2111,共6页
Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. ... Two experimental single crystal superalloys, Ru-free alloy and Ru-containing alloy with [001] orientation, other alloying element contents being basically kept same, were cast in the directionally solidified furnace. The effect of Ru on the stress rupture properties of the single crystal superalloy was investigated at (980 ℃, 250 MPa), (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa). The results show that Ru can enhance high temperature stress rupture properties of single crystal superalloy. The improvement effect of Ru addition on stress rupture properties decreases with increasing test temperature. The γ′ coarsening and rafting directionally are observed in Ru-free alloy and Ru-containing alloy after stress rupture test. Needle shaped TCP phases precipitated in both of alloys after stress rupture test at (1100 ℃, 140 MPa) and (1120 ℃, 140 MPa) and no TCP phase was observed in both of alloys after stress rupture test (980 ℃, 250 MPa). The precipitate volume fraction of TCP phases is significantly decreased by the addition of Ru. At last, the relationship between the microstructure change with Ru addition and improvement of stress rupture properties was discussed. 展开更多
关键词 Ni-based single crystal superalloy RU stress rupture properties
下载PDF
Effect of Phosphorus on Stress Rupture Properties of GH4133 Ni-Base Superalloy 被引量:2
2
作者 Wenru SUN+, Shouren GUO, Baiyun TONG, Dezhong LU, Yan XU, Xiaona MENG, Na LI and Zhuangqi HUDepartment of Superallovs, Institute of Metai Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第4期289-293,共5页
The effect of phosphorus on the stress rupture property of GH4133 alloy has been investigated and is compared with that of IN718 alloy. The GH4133 alloy is crept by dislocation movement. Phosphorus has a tendency to p... The effect of phosphorus on the stress rupture property of GH4133 alloy has been investigated and is compared with that of IN718 alloy. The GH4133 alloy is crept by dislocation movement. Phosphorus has a tendency to prolong the rupture life of some wrought superalloys by inhibiting the dislocation movement. If the phosphorus addition is too high, its effect on impairing the grain boundary cohesion overwhelms that on inhibiting the dislocation movement, and the life of the GH4133 alloy can be shortened. The two functions of inhibiting the dislocation movement and impairing the grain boundary cohesion determine that the optimum phosphorus content in the GH4133 alloy is around 0.011 wt pet. Phosphorus exhibits a greater effect on prolonging the rupture life of IN718 alloy than that of GH4133 alloy. The two alloys are crept by different mechanisms. The intergranular phosphorus-bearing phase is precipitated in the IN718 alloy, while not in the GH4133 alloy. The precipitation of the phosphorus bearing phase can balance the phosphorus segregation at the grain boundaries and allows a more remarkable effect of phosphorus on extending the rupture life of IN718 alloy. 展开更多
关键词 PHOSPHORUS Alloy GH4133 stress rupture property
下载PDF
Effect of γ' formation and strengthening elements on microstructures and stress rupture property of single crystal super-alloys 被引量:2
3
作者 Liu Lirong Chen Haijun +3 位作者 Jin Tao Sun Xiaofeng Guan Hengrong Hu Zhuangqi 《China Foundry》 SCIE CAS 2010年第3期265-269,共5页
An investigation was carried out to study the effects of γ' formation and strengthening elements (Al, Ti and Ta) on the microstructure and stress rupture properties of nickel base single crystal super-alloys.The ... An investigation was carried out to study the effects of γ' formation and strengthening elements (Al, Ti and Ta) on the microstructure and stress rupture properties of nickel base single crystal super-alloys.The results show that with the increase of γ' formation and strengthening elements, the percentage of γ-γ' eutectic and the misfit degree of γ/γ' increases.Detailed microstructural analysis revealed that with the increase of γ' forming element content, the morphology of γ' changed from spherical to cubic, then irregular shape; and the size of γ' increases gradually.Excessive γ' formation and strengthening elements will lead to the precipitation of μ phase during stress rupture tests.The alloy with 5wt.%Al, 1wt.%Ti and 6wt.%Ta has the best stress rupture property. 展开更多
关键词 γ' phase MICROSTRUCTURES stress rupture property single crystal super-alloy
下载PDF
EFFECT OF HEAT TREATMENT ON INTERMEDIATE TEMPERATURE STRESS RUPTURE PROPERTIES OF ALLOY K403 被引量:1
4
作者 Zheng Yunrong, Li Shuyuan, Ma Shuwei (Beijing Institute of Aeronautical Materials, Beijing, 100095, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第4期64-69,共6页
The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stre... The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stress rupture life at 750℃ and 645MPa is longer than 50h. The results showed that the intermediate temperature stress rupture properties impaired by treatment of 1210℃/4h were due to precipitation of too small γ′ phase(<0.2μm) in grains and absence of the secondary carbides at grain boundaries. Microstructure containing the intergranular M6C carbides with envelope of γ′ and the residual coarse γ′ was obtained by means of 1180℃/4h treatment, therefore the stress rupture life was obviously increased to meet the demand of HB5155. The effect of γ′ size was also discussed from the view point of deformation mechanism in this paper. 展开更多
关键词 cast alloys heat resistant alloys heat treatment microstructure intermediate temperature stress rupture properties deformation mechanism
下载PDF
Influence of thermal exposure on microstructure and stress rupture properties of a new Re-containing single crystal Ni-based superalloy 被引量:2
5
作者 Chen-guang Liu Yun-song Zhao +3 位作者 Jian Zhang Ding-zhong Tang Chun-zhi Li Zhen-ye Zhao 《China Foundry》 SCIE 2018年第1期51-57,共7页
In this study, the long-term thermal microstructural stability and related stress rupture lives of a new Re-containing Ni-based single-crystal superalloy, DD11, were investigated after high-temperature exposure for di... In this study, the long-term thermal microstructural stability and related stress rupture lives of a new Re-containing Ni-based single-crystal superalloy, DD11, were investigated after high-temperature exposure for different lengths of time. The results show that the γ' precipitates retained a cuboidal morphology and the γ' size increased after short thermal exposure for 50 h at 1,070℃. As the thermal exposure time was prolonged to 500 h, the cuboidal γ' gradually changed into irregular raft-like morphology due to particles coalescence, and the morphology of the microstructure was almost unchanged after further thermal exposure up to 3,000 h. The stress rupture experiments at 1,070℃ and a tensile stress of 140 MPa showed that the rupture lives increased significantly after thermal exposure for 50 h and dropped dramatically with increasing exposure time up to 500 h but decreased slowly after exposure for more than 500 h. These results imply that stress rupture properties did not decrease when the γ' remained cuboidal but degraded to different extents during the γ' coarsening process. The coarsening of the γ' precipitates and change in morphology were regarded as the main factors leading to the degradation of the stress rupture lives. This study provides fundamental information on the high-temperature longterm microstructural stability and mechanical performance, which will be of great help for DD11 alloy optimization and engineering aeroengine applications. 展开更多
关键词 Ni-based superalloy thermal exposure MICROSTRUCTURE COARSENING stress-rupture properties
下载PDF
Effect of boron addition on the microstructure and stress-rupture properties of directionally solidified superalloys 被引量:4
6
作者 Bao-ping Wu Lin-han Li +5 位作者 Jian-tao Wu Zhen Wang Yan-bin Wang Xing-fu Chen Jian-xin Dong Jun-tao Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1120-1126,共7页
This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content ... This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content in the as-cast alloys, there is an increase in the fraction of the γ′/γ eutectic and block borides precipitate around the γ′/γ eutectic. At a high boron content of 0.03wt%, there is precipitation of lamellar borides. Upon heat treatment, fine block borides tend to precipitate at grain boundaries with increasing boron content. Overall, the rupture life of the directionally solidified superalloy is significantly improved with the addition of nominal content of boron. However, the rupture life decreases when the boron content exceeds 0.03wt%. 展开更多
关键词 superalloys directional solidification microstructure boron stress-rupture properties
下载PDF
Effect of Nb content on microstructure stability and stress rupture properties of single crystal superalloy containing Re and Ru
7
作者 史振学 刘世忠 +2 位作者 岳晓岱 王效光 李嘉荣 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1293-1300,共8页
Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the micro... Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the microstructure,stability at1100°C and stress rupture properties at 1070°C and 160 MPa of the single crystal superalloy were investigated.The experiment results show that the primary dendrite arm spacing decreases and the volume fraction ofγ/γ′eutectic of the alloy increases with the increase of Nb content in the as-cast microstructures.The size ofγ′phase particles becomes small and uniform and the cubic shape does not obviously change with the increase of Nb content.The precipitating rate and volume fraction of TCP phases increase significantly with the increase of Nb content in the process of long term aging at 1100°C.The stress rupture lives increase and elongation decreases with increasing Nb content at 1070°C/160 MPa.At last,the relationship between the microstructures stability,stress rupture properties of the alloy and Nb content is discussed based on JMat Pro software and the lastest relevant database for single crystal superalloy. 展开更多
关键词 single crystal superalloy NB microstructure stability long-term aging stress rupture properties
下载PDF
Effect of anisotropy on microstructure and high temperature stress rupture properties of Ni_3Al base single crystal alloy
8
作者 孔志刚 韩雅芳 李树索 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1892-1896,共5页
The effect of anisotropy on microstructure and high temperature stress rupture property of Ni3Al base single crystal alloy was investigated. The single crystal specimens were produced by screw selection crystal method... The effect of anisotropy on microstructure and high temperature stress rupture property of Ni3Al base single crystal alloy was investigated. The single crystal specimens were produced by screw selection crystal method. The microstructures were examined by OM, SEM, TEM and X-ray EDS techniques. The stress rupture tests were carried out in air by constant load creep machines under 1 100℃and 130 MPa. The experimental results show that the dendrites preferential orientation deviates certain angles to heat flow orientation, and the secondary arms occur for different crystallographic orientations. The single crystal alloy with different orientations shows obvious anisotropy during tensile stress rupture tests under 1 100℃and 130 MPa. The <111> orientation specimen has the best stress rupture life of 211 h. The high ductility at 1 100℃of the <001> orientation specimen may be attributed to the most multiple equivalent slip systems. 展开更多
关键词 各向异性 微观结构 单晶结构 镁合金
下载PDF
Effects of cerium addition on the microstructure and stress rupture properties of a new nickel-based cast superalloy 被引量:1
9
作者 Lirong Rong Min Wang +2 位作者 Weiwei Xing Xianchao Hao Yingche Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期112-124,共13页
The microstructure and stress rupture properties of a new nickel-based cast superalloy were investigated with the cerium(Ce)additions of 0,19,50,96,150,and 300 ppm,respectively.The results indicated that Ce was mainly... The microstructure and stress rupture properties of a new nickel-based cast superalloy were investigated with the cerium(Ce)additions of 0,19,50,96,150,and 300 ppm,respectively.The results indicated that Ce was mainly found in M C and M 23 C 6 carbides,and it was also found to exist in the form of cerium-rich phases or inclusions.According to the microstructure evidence,Ce promoted the formation of M C carbides and aggravated the inhomogeneity of M 23 C 6 carbides along grain boundaries.It was also identi-fied that the average sizes of primary and secondaryγ’phases all decreased with the rising Ce content.The acceleration of Ti,Nb,and C segregations during solidification was attributed to the influence of cerium on the variation of carbides along grain boundaries.The stress rupture life experienced a signifi-cant drop as the Ce content increased from 19 to 300 ppm.Explorations showed that the degradation was mainly attributed to the severe degradation of M C carbides and the easily forming micro-voids around them caused by the Ce addition.In addition to that,the increments in the inhomogeneous distribution of M 23 C 6 carbides at grain boundaries and the accelerated coarsening rate ofγ’phases both induced the fracture under complex stress conditions. 展开更多
关键词 Nickel-based cast superalloy CERIUM MC carbide stress rupture properties
原文传递
Effect of stabilizing treatment on microstructure and stress rupture properties of phosphorus microalloyed Inconel 706 alloy
10
作者 Sha Zhang Yu-chao Wu +6 位作者 Yu Lil Zhong-pei Dail Dan Jia Yan-fei Xu Guang-sheng Zeng Zhi-ming Guo Jian Liul 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第8期1613-1621,共9页
The microstructure and stress rupture properties of Inconel 706 alloy microalloyed with phosphorus are examined under stabilizing and unstabilizing heat treatment conditions.It was found that applying the stabilizing ... The microstructure and stress rupture properties of Inconel 706 alloy microalloyed with phosphorus are examined under stabilizing and unstabilizing heat treatment conditions.It was found that applying the stabilizing treatment resulted in a 98% increment in the stress rupture life and a 215% increment in the elongation tested at 650℃/690 MPa for the alloy compared to that under the unstabilizing heat treatment condition.The stabilizing treatment led to the precipitation of rod-shaped and needle-shaped n phases at the grain boundaries.Morphologies of γ'-γ" co-precipitates in the grain interior were noncompact form and compact form for the alloy under unstabilizing and stabilizing heat treatment conditions,respectively.Based on the microstructure characterizations,the improvement of stress rupture properties by the stabilizing treatment was attributed to the precipitation of n phases at the grain boundaries,which can hinder cracks initiation and propagation and relieve the stress concentration. 展开更多
关键词 SUPERALLOY STABILIZATION ηphase γ'-γ"co-precipitate stress rupture property
原文传递
微量元素Zr对高温合金铸件凝固缺陷及持久性能的影响
11
作者 周阳 崔艳娜 +3 位作者 王博 李淑苹 李明 王俊 《有色金属材料与工程》 CAS 2024年第5期10-17,共8页
高温合金中微量元素含量虽然极低,但是其对合金的高温性能产生的重要作用不可忽略。以Zr为例,其存在对高温合金铸造特性和高温力学性能的影响仍需要进一步探索。研究了微量合金元素Zr对K417合金凝固过程中凝固缺陷的形成、组织演变以及... 高温合金中微量元素含量虽然极低,但是其对合金的高温性能产生的重要作用不可忽略。以Zr为例,其存在对高温合金铸造特性和高温力学性能的影响仍需要进一步探索。研究了微量合金元素Zr对K417合金凝固过程中凝固缺陷的形成、组织演变以及持久性能的影响。研究结果表明,Zr的加入会影响合金铸态组织中共晶组织的含量,同时也影响凝固过程中的固液相线。随着Zr含量的增加,凝固温度区间先下降后增加;从而影响合金铸造流动性以及组织凝固缺陷的形成。900℃、314 MPa下的持久性能测试结果表明,随着Zr含量的增加,寿命先延长后降低,Zr含量为0.07%时达到最大值。为铸造高温合金母合金中微量元素含量的控制,提高铸件冶金质量提供实验支撑。 展开更多
关键词 镍基高温合金 微量元素Zr 凝固缺陷 高温持久性能
下载PDF
Ti65合金饼坯锻件持久性能及位错演变规律研究
12
作者 邓雨亭 王旭 +2 位作者 刘英飒 刘晶南 周毅 《钛工业进展》 CAS 2024年第3期1-8,共8页
采用光学显微镜、电子背散射衍射和透射电子显微镜等研究了大厚截面的Ti65合金饼坯锻件力学性能以及在650℃/240 MPa条件下不同位置和同一位置不同持久时间停机后的位错演变规律。结果表明:大厚截面的锻件从边缘到心部的拉伸和持久性能... 采用光学显微镜、电子背散射衍射和透射电子显微镜等研究了大厚截面的Ti65合金饼坯锻件力学性能以及在650℃/240 MPa条件下不同位置和同一位置不同持久时间停机后的位错演变规律。结果表明:大厚截面的锻件从边缘到心部的拉伸和持久性能存在较大差异,当距表面距离从0 mm增加至30 mm(锻件厚度的1/4)时,室温和650℃抗拉强度分别从1203 MPa和704 MPa降低至1081 MPa和652 MPa,持久断裂时间从66 h提升到161 h;当距表面距离从30 mm增加至60 mm(锻件厚度的1/2)时,抗拉强度和持久性能基本保持不变。从持久初期至持久后期,可以发现等轴α相与片状α相中的位错密度均显著升高,高密度的位错主要集中于片状α相界面处。大应力持久条件下位错可以直接穿过硅化物,厚片层α相内部弥散分布的α2相有利于持久性能的提升。 展开更多
关键词 Ti65合金 饼坯 持久性能 位错演变
下载PDF
微晶铸造对K4169合金组织及持久性能的影响
13
作者 胡聘聘 王越 +5 位作者 李妍佳 何金珊 张丽辉 罗亮 王西涛 肖程波 《中国材料进展》 CAS CSCD 北大核心 2024年第10期865-870,共6页
分别采用普通铸造、细晶铸造和微晶铸造工艺制得了晶粒度为ASTM M9~M7级、ASTM M14~M9级和ASTM 3~5级的K4169合金试样,研究了微晶铸造对K4169合金组织及持久性能的影响。研究结果表明,微晶铸造工艺可显著细化晶粒,降低凝固偏析,减少Lave... 分别采用普通铸造、细晶铸造和微晶铸造工艺制得了晶粒度为ASTM M9~M7级、ASTM M14~M9级和ASTM 3~5级的K4169合金试样,研究了微晶铸造对K4169合金组织及持久性能的影响。研究结果表明,微晶铸造工艺可显著细化晶粒,降低凝固偏析,减少Laves相和大块MC碳化物,增加γ″相体积分数;使合金704℃/448 MPa条件下的持久性能相比于普通铸造和细晶铸造合金分别提高了621%和44%,达到614.9 h;断裂模式从普通铸造K4169的脆性穿晶断裂转变为微晶铸造K4169的韧性沿晶穿晶混合型断裂。微晶铸造工艺引起的晶粒细化和γ″相体积分数的提高,有效强化了K4169合金,而大块MC碳化物及Laves相的减少,减少了潜在的裂纹萌生、扩展位置,二者共同作用提高了K4169合金的持久寿命,并降低了性能数据分散性。微晶铸造工艺可获得良好的综合力学性能,提升K4169合金机匣、壳体、扩压器等整体结构件在700℃以下的服役性能,有良好的应用前景。 展开更多
关键词 K4169 细晶铸造 微晶铸造 显微组织 持久性能 断裂机制 高温合金
下载PDF
Effect of dendrite arm spacing and the γ' phase size on stress rupture properties of Ni_3Al-base single crystal superalloy IC6SX 被引量:4
14
作者 JIANG LiWu1,LI ShuSuo1,WU MeiLing1 & HAN YaFang1,2 1 School of Materials Science and Engineering,Beihang University,Beijing 100191,China 2 Beijing Institute of Aeronautical Materials,Beijing 100095,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第6期1460-1465,共6页
The effect of dendrite arm spacing and the size of γ' phase on stress rupture properties of as-cast Ni3Al-based single crystal superalloy IC6SX was studied.It has been found that the stress rupture properties wer... The effect of dendrite arm spacing and the size of γ' phase on stress rupture properties of as-cast Ni3Al-based single crystal superalloy IC6SX was studied.It has been found that the stress rupture properties were affected by dendrite arm spacing and the size of γ' phase significantly,i.e.,the stress rupture lives of as-cast specimens under the test condition of 1100°C/120 MPa were significantly increased from about 10 h to 31 h with decreasing dendrite arm spacing and the size of γ' phase from 3.0 μm and 1.6 μm to 1.3 μm and 0.8 μm,respectively.The creep cracks generated easily in the brittle Y-NiMo phase.Then the cracks gradually mergered and grew up during creep,and finally led to specimens fracture.The orientated coarsening of γ' phase has been found in the stress ruptured specimens,due to the elements diffusion.However,the γ' phase did not form the integrated structure during the short periods of 10-31 h as the creep tests lasted. 展开更多
关键词 DENDRITE arm spacing SIZE of γ’ PHASE Ni3Al-based single crystal stress rupture property
原文传递
Microstructures and properties of transient liquid phase diffusion bonded joints of Ni_3Al-base superalloy 被引量:8
15
作者 李晓红 毛唯 程耀永 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期405-408,共4页
An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results... An investigation of transient liquid phase (TLP) diffusion bonding of a Ni 3Al base directionally solidified superalloy, IC6 alloy, was presented. The interlayer alloy employed was Ni Mo Cr B powder alloy. The results show that the microstructure of the TLP diffusion bonded joints is a combination of γ solid solution (or a γ+γ′ structure) and borides. With the bonding time increasing, the quantity of the borides both in bonding seam and adjacent zones is gradually reduced, and the joint stress rupture property is improved. The obtained stress rupture property of the TLP bonded joints is on a level with the transverse property of IC6 base materials. [ 展开更多
关键词 Ni 3Al base superalloy TLP diffusion bonding stress rupture property
下载PDF
Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650℃ to 800℃ 被引量:3
16
作者 Meiqiong Ou Yingche Ma +4 位作者 Weiwei Xing Xianchao Hao Bo Chen Leilei Ding Kui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1270-1277,共8页
The stress rupture properties and deform ation mechanism s of K4750 alloy at 650 ℃, 700 ℃, 750 ℃ and 800 ℃ were investigated. As the decrease of tem perature and stress, the stress rupture life gradually increased... The stress rupture properties and deform ation mechanism s of K4750 alloy at 650 ℃, 700 ℃, 750 ℃ and 800 ℃ were investigated. As the decrease of tem perature and stress, the stress rupture life gradually increased. A Larson-Miller Parameter (LMP) method was used for analyzing the stress rupture life under different conditions. The linear fitting formula between stress (σ) and LMP was derived as σ= 3166.455-119.969 ×LMP and the fitting coefficient w as 0.98. After testing, the dislocation configurations of all stress rupture samples w ere investigated by transm ission electron microscopy (TEM). The tem perature and stress had a significant impact on the deform ation m echanism, thereby affected the stress rupture life of K4750 alloy. As the increasing stress at a given tem perature, the deform ation m echanism gradually transform ed from Orowan looping to stacking fault shearing. Based on experim ental results, the threshold stress at 650 ℃, 700 ℃, 750 ℃ and 800 ℃ for the transition of deformation mechanism was estimated to be about 650 MPa, 530 MPa, 430 MPa and 350 MPa, respectively. Below the threshold stress,γ phase effectively hindered dislocation motion by Orowan looping mechanism, K4750 alloy had along stress rupture life. Slightly above the threshold stress, Orowan looping combining stacking fault shearing was the dom inant mechanism ,the stress rupture life decreased. As the further increase of stress, stacking fault shearing acted as the dominant deformation mechanism , the resistance to dislocation motion decreased rapidly, so the stress rupture life reduced significantly. 展开更多
关键词 NICKEL based SUPERALLOY stress rupture PROPERTIES DISLOCATION Deformation mechanisms Transmission electron MICROSCOPY
原文传递
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NOVEL 718 SUPERALLOY 被引量:6
17
作者 J.H.Du X.D.Lü +3 位作者 J.L.Qu Q.Deng J.Y.Zhuang Z.Y.Zhong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第6期418-424,共7页
Recently,a novel 718 superalloy with remarkable structural stability at 680℃has been designed and fabricated by CISRI(Central Iron and Steel Research Institute)etc.Phase identification of novel 718 alloy under the ab... Recently,a novel 718 superalloy with remarkable structural stability at 680℃has been designed and fabricated by CISRI(Central Iron and Steel Research Institute)etc.Phase identification of novel 718 alloy under the above-mentioned heat-treatment condition was performed using optical microscopy(OM),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Results show that the novel 718 alloy has outstanding structural stability at 680℃.The novel 718alloy possess excellent structural stability and good mechanical properties,which is attributed to y-phase strengthening and also to the specific sandwich structure of theγ′+γ'strengthening phase. 展开更多
关键词 novel 718 superalloy MICROSTRUCTURE mechanical property stress rupture CREEP
下载PDF
Effects of Dendritic Orientation on Stress Rupture Properties of DD6 Single Crystal Superalloy 被引量:3
18
作者 SHI Zhen-xue LI Jia-rong LIU Shi-zhong ZHAOJin-qian 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期66-71,共6页
DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy a... DD6 single crystal superalloy slabs were prepared with seed method in the direetionally solidified furnace with high temperature gradient. The transverse stress rupture properties and fracture hehaviour of the alloy at 760 ℃/758 MPa, 850 ℃/550 MPa and 980 ℃/250 MPa were investigated and compared with those of longitudinal specimens. The transverse stress rupture lives are corresponding with the longitudinal stress rupture lives at 760 ℃/758 MPa and 850 ℃/550 MPa. The transverse stress rupture lives are slightly less than the longitudinal stress rupture lives at 980 ℃/ 250 MPa. The fracture mechanism of the transverse stress rupture of the alloy at 760 ℃/758 MPa shows quasi-cleav- age mode and the fracture mechanism at 980 ℃/250 MPa shows dimple mode, while the fracture mechanism at 850 ℃/ 550 MPa shows quasi-cleavage and dimple mixture mode. At higher temperature and lower stress, the microeracks are easier to initiate and interconnect in the transverse specimen than those in longitudinal specimen because there are interdendritic regions perpendicular to the axis of stress. 展开更多
关键词 DD6 single crystal superalloy stress rupture property fracture behaviour
原文传递
Effect of Hf on Stress Rupture Properties of DD6 Single Crystal Superalloy After Long Term Aging 被引量:4
19
作者 SHI Zhen-xue LI Jia-rong LIU Shi-zhong 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2012年第7期66-70,共5页
The specimens of the second generation single crystal superalloy DD6 with different Hf contents were prepared in the directionally solidified furnace with a high temperature gradient. The long term aging of the specim... The specimens of the second generation single crystal superalloy DD6 with different Hf contents were prepared in the directionally solidified furnace with a high temperature gradient. The long term aging of the specimens after full heat treatment was performed at 1040℃for 800 h. The effect of Hf on the microstructure and stress rupture properties under 980℃/250 MPa of the alloy after long term aging was investigated. The results show that the γ' coarsening and rafting and no topologically close packed phase (TCP) are observed in the microstructures of DD6 alloy with different Hf contents after aged at 1 040℃ for 800 h. It indicates that DD6 alloy with different Hf contents all possesses good microstructure stability. With increasing Hf content the rupture life after long term aging turns shorter and the elongation represents the increasing first and decreasing afterwards. The fracture mechanism of the alloy with different Hf contents at 980℃/250 MPa all shows dimple model. The influence of the microstructures on the stress rupture properties of the alloy is also discussed. 展开更多
关键词 DD6 single crystal superalloy stress rupture property long term aging
原文传递
Effect of Heat Treatment on Microstructure and Stress Rupture Properties of a Ni–Mo–Cr–Fe Base Corrosion-Resistant Superalloy 被引量:1
20
作者 Tao Liu Mei Yang +3 位作者 Jun-Song Wang Jia-Sheng Dong Li Wang Lang-Hong Lou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第1期116-126,共11页
The influences of heat treatment and test condition on the microstructure and stress rupture properties of a Ni–Mo–Cr–Fe base corrosion-resistant superalloy have been investigated in this paper. Optical microscope ... The influences of heat treatment and test condition on the microstructure and stress rupture properties of a Ni–Mo–Cr–Fe base corrosion-resistant superalloy have been investigated in this paper. Optical microscope and scanning electron microscope were employed for the microstructure observation, and X-ray diffraction, electron probe micro-analyzer, and transmission electron microscope were used for phase determination. It was found that the grain size increased and the volume fractions of initial M_6C carbides decreased along with the increase in solution treatment temperature. When tested at 650 °C/320 MPa, the stress rupture lives decreased with the increase in solution treatment temperature, but the stress rupture lives increased slightly at first and then decreased for the samples solution heat treated at 1220 °C when tested at 700 °C/240 MPa. The elongations showed the descendent trends under these two conditions. The stress rupture life and elongation for the aged samples all showed a noticeable improvement at 650 °C/320 MPa, but there was no noticeable improvement at 700 °C/240 MPa. The reasons can be attributed to the grain size, test conditions, and the initial and secondary carbides. 展开更多
关键词 Corrosion-resistant SUPERALLOY Heat treatment stress rupture properties SECONDARY carbides
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部