Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepa...Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×10^6A/cm^2 (10K, 0.5T) and 1.7×10^6A/cm^2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.展开更多
To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + ...To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.展开更多
The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO...The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.展开更多
The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the sem...The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the semiinfinite HTS,the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS.The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling(ZFC)condition and field cooling(FC)condition.It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle.However,the maximum torque has the positive or negative sine relation.From the viewpoint of the rotational equilibrium,the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC,but the same orientation is considered as a stable equilibrium point in FC.In addition,both of the variation cycles of the maximum force and torque with the angle areπ.展开更多
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS l...Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.展开更多
The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the...The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.展开更多
The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact struct...The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact structure makes the REBCO bulk magnet widely applicable in many scenarios,such as in motor,generator,and bearing for flywheel.This review focuses on some research areas using the REBCO bulk magnet,which is quite interesting but has attracted little attention,including magnet lens,compact NMR,magnetron sputtering system,drug magnetic targeting system,magnetic separation,and magnetic mirror.In all of these areas,the REBCO bulk magnet shows its own advantages of having a high magnetic field but a small size to improve the final function.展开更多
Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by diff...Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.展开更多
The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev...The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.展开更多
The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of singl...The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of single domain YBCO bulk superconductors with different ratios of nanoscale Y2Ba4CuBiOy (YBi2411) inclusions in the solid phase pellet is successfully fabricated by the TSIG technique on the basis of previous research. In the present work, the results of YBCO bulk superconductors with YBi2411 and CeO2 (1 wt%) codoping system indicate that, the optimum doping of YBi2411 is 2 wt%, the size of Y211 particles is reduced compared with the samples without CeO2 doping;the largest levitation force is about 15 N obtained in the samples with optimum YBi2411, which is about two times higher than that of the sample without CeO2 doping. The results are very helpful for the fabrication of high quality single domain YBCO bulk superconductors.展开更多
The homogeneity of the microstructure and composition are critical in determining the properties of rare earthbarium‐cuprate,single grain bulk superconductors[(RE)BCO].The magnitude of the trapped magnetic field achi...The homogeneity of the microstructure and composition are critical in determining the properties of rare earthbarium‐cuprate,single grain bulk superconductors[(RE)BCO].The magnitude of the trapped magnetic field achieveable in these technologically important materials,in particular,is influenced heavily by the size and distribution of(RE)_(2)BaCuO_(x)(RE‐211)flux pinning inclusions in the bulk microstructure,whereas the size and distribution of silver agglomerates present within the bulk superconducting matrix correlate directly with improved mechanical properties.With careful engineering,these materials have significant potential for application in range of devices related to energy storage,medicine,electro‐magnetic machinery and microelectronic technology.Fabrication of(RE)BCO bulk superconductors typically involves heating a powder compact above its peritectic decomposition temperature followed by slow cooling to facilitate the growth of a single grain.Each(RE)BCO composition has a different peritectic temperature and growth rate,which,therefore,necessitates different requirements in the heating profile.The fabrication temperature and growth rate,for example,may have an effect on the RE‐211 and silver distribution,which may,in turn,affect the superconducting properties of the resulting single grain.In this work we compare the distributions of silver and RE‐211 in the single grain microstructures of YBCOAg,GdBCO‐Ag,EuBCO‐Ag and SmBCO‐Ag bulk superconductors using optical microscopy,scanning electron microscopy and energy dispersive X‐ray spectroscopy.We observe that the distributions are very similar along both the a/b‐axis and c‐axis of these materials.This suggests that factors other than the maximum temperature used to achieve peritectic decomposition and the rate of single grain growth are particularly influential in determining the properties of the as‐processed samples in the top seeded melt growth process.This observation demonstrates there is freedom to use(RE)materials interchangeably between different applications as required,for example,for functional or economic reasons.展开更多
We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance at...We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.展开更多
The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,c...The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,compared with conventional superconducting materials.Using commercial 2G-HTS tapes,more than a dozen cable vendors had been manufacturing REBCO cables,such as the latest kilometer-class REBCO cable,which was incorporated into a civil grid on December 2021,as part of the recordbreaking 35-kV-voltage superconductor cable demonstration project in downtown Shanghai.This paper describes the development of HTS-coated conductors,then outlines the various technological routes for their preparation,reviews the artificial flux pinning of coated conductors,and finally summarizes the technological breakthroughs,the latest research advances,and provides an outlook on their application prospects.展开更多
Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising...Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising applications in extreme environments.The wear behavior and mechanism were systemati-cally investigated from room temperature(RT)to 750℃.The results show that the wear rate increases from∼2.65×10^(-6)mm^(3)N^(-1)m^(-1)to∼10.56×10^(-6)mm^(3)N^(-1)m^(-1)in the temperature span RT to 400℃,following abrasive wear and flash temperature-induced oxidative wear during the friction.However,at the higher temperature of 600℃,further heating due to frictional heat leads to a softening of the wear surface,resulting in a maximum wear rate of∼20.99×10^(-6)mm^(3)N^(-1)m^(-1)under softness-driven abrasive wear as well as oxidative wear.Interestingly,the wear resistance at an even higher temperature of 750℃shows a paradoxical improvement of∼7.08×10^(-6)mm^(3)N^(-1)m^(-1),which is attributed to the formation of an oxide layer with a thickness of several microns,avoiding violent wear of BMG.The re-sults demonstrate the unreported outstanding high-temperature wear resistance of the Ir-Ta-Ni-Nb BMG,especially its excellent capability to resist wear at 750℃,leading to the promising applications of BMG in the fields of aerospace,metallurgy,and nuclear industries.展开更多
Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet c...Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet can be levitated at about 1 mm height at 77 K. The XRD and SEM indicated that magnetic lifting property can be enhanced by addition of Ag2O and Y2BaCuO5.展开更多
Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape...Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.展开更多
We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, esti...We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.展开更多
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally c...Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-To superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-Tc superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: supercon- ductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- Tc superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-Tc superconductivity.展开更多
基金Project supported by the Natural Science Foundation of Gansu province of China (Grant No ZS032-B25-019).
文摘Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×10^6A/cm^2 (10K, 0.5T) and 1.7×10^6A/cm^2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.
基金supported by the National Natural Science Foundation of China (Grant No. 52072229)the Key-grant Project of the Ministry of Education of China (Grant No. 311033)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. GK201706001)the Teaching Reform and Innovation Project of Higher Education in Shanxi Province, China (Grant No. J2021719)。
文摘To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.
基金Supported by the Foundation of National 863 Programme of China (No.2002AA306421)
文摘The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools. A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.
基金Projects supported by the National Natural Science Foundation of China(Grant No.11572232)the China Three Gorges Corporation Research Project(Grant No.202103407)。
文摘The interaction between a permanent magnet(PM)assumed as a magnetic dipole and a flat high-temperature superconductor(HTS)is calculated by the advanced frozen-image model.When the dipole vertically moves above the semiinfinite HTS,the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS.The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling(ZFC)condition and field cooling(FC)condition.It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle.However,the maximum torque has the positive or negative sine relation.From the viewpoint of the rotational equilibrium,the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC,but the same orientation is considered as a stable equilibrium point in FC.In addition,both of the variation cycles of the maximum force and torque with the angle areπ.
基金the National Natural Science Foundation of China(Grant No.11572232)。
文摘Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.
基金partly supported by the National Natural Science Foundation of China under Grants No.61473061 and No.61104104the Sichuan Science and Technology Program under Grant No.2020YFSY0012the Program for New Century Excellent Talents in University under Grant No.NCET-13-0091。
文摘The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.
基金National Key R&D Program of China(Grant No.2018YFF0109401)the National Natural Science Foundation of China(Grant Nos.51702316,51777205,51807191 and 11745005)+1 种基金the International Partnership Program of the Chinese Academy of Sciences(Grant Nos.182111KYSB20170039 and 182111KYSB20170067)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS⁃LY⁃JSC039).
文摘The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact structure makes the REBCO bulk magnet widely applicable in many scenarios,such as in motor,generator,and bearing for flywheel.This review focuses on some research areas using the REBCO bulk magnet,which is quite interesting but has attracted little attention,including magnet lens,compact NMR,magnetron sputtering system,drug magnetic targeting system,magnetic separation,and magnetic mirror.In all of these areas,the REBCO bulk magnet shows its own advantages of having a high magnetic field but a small size to improve the final function.
基金supported by the National Magnetic Confinement Fusion Science Program (2011GB112001)the Program of International S&T Cooperation (S2013ZR0595)+2 种基金the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11CX073, SWJTU11ZT16 and SWJTU11ZT31)the Science Foundation of Sichuan Province (2011JY0031 and 2011JY0130)
文摘Superconducting magnetic levitation performance, including levitation force and guidance force, is important for the application of high-temperature super- conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guidance force of a new type of three magnetic hills of permanent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation performance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.
基金supported by the PCSIRT of the Ministry of Education of China (No. IRT0751)the National High Technology Research and Development Program of China (863 Program: No. 2007AA03Z203)+2 种基金the National Natural Science Foundation of China (Nos.50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (No.SRFDP200806130023)the Fundamental Research Funds for the Central Universities (Nos. SWJTU09BR152, SWJTU09ZT24 and SWJTU11CX073)
文摘The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.
文摘The top-seeded infiltration and growth process (TSIG) is very effective method for the preparation of YBa2Cu3O7-x (YBCO) bulk superconductors. In order to improve the levitation force of the samples, a series of single domain YBCO bulk superconductors with different ratios of nanoscale Y2Ba4CuBiOy (YBi2411) inclusions in the solid phase pellet is successfully fabricated by the TSIG technique on the basis of previous research. In the present work, the results of YBCO bulk superconductors with YBi2411 and CeO2 (1 wt%) codoping system indicate that, the optimum doping of YBi2411 is 2 wt%, the size of Y211 particles is reduced compared with the samples without CeO2 doping;the largest levitation force is about 15 N obtained in the samples with optimum YBi2411, which is about two times higher than that of the sample without CeO2 doping. The results are very helpful for the fabrication of high quality single domain YBCO bulk superconductors.
基金support from the Engineering and Physical Sciences Research Council(EPSRC)grant EP/T014679/1.
文摘The homogeneity of the microstructure and composition are critical in determining the properties of rare earthbarium‐cuprate,single grain bulk superconductors[(RE)BCO].The magnitude of the trapped magnetic field achieveable in these technologically important materials,in particular,is influenced heavily by the size and distribution of(RE)_(2)BaCuO_(x)(RE‐211)flux pinning inclusions in the bulk microstructure,whereas the size and distribution of silver agglomerates present within the bulk superconducting matrix correlate directly with improved mechanical properties.With careful engineering,these materials have significant potential for application in range of devices related to energy storage,medicine,electro‐magnetic machinery and microelectronic technology.Fabrication of(RE)BCO bulk superconductors typically involves heating a powder compact above its peritectic decomposition temperature followed by slow cooling to facilitate the growth of a single grain.Each(RE)BCO composition has a different peritectic temperature and growth rate,which,therefore,necessitates different requirements in the heating profile.The fabrication temperature and growth rate,for example,may have an effect on the RE‐211 and silver distribution,which may,in turn,affect the superconducting properties of the resulting single grain.In this work we compare the distributions of silver and RE‐211 in the single grain microstructures of YBCOAg,GdBCO‐Ag,EuBCO‐Ag and SmBCO‐Ag bulk superconductors using optical microscopy,scanning electron microscopy and energy dispersive X‐ray spectroscopy.We observe that the distributions are very similar along both the a/b‐axis and c‐axis of these materials.This suggests that factors other than the maximum temperature used to achieve peritectic decomposition and the rate of single grain growth are particularly influential in determining the properties of the as‐processed samples in the top seeded melt growth process.This observation demonstrates there is freedom to use(RE)materials interchangeably between different applications as required,for example,for functional or economic reasons.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603900)in part by the Russian Science Foundation(RSCF)(Grant No.19-72-10016-P).
文摘We report our progress in the high-temperature superconductor(HTS)Josephson junction fabrication process founded on utilizing a focused helium ion beam damaging technique and discuss the expected device performance attainable with the HTS multi-junction device technology.Both the achievable high value of characteristic voltage V_(C)=I_(C)R_(N)of Josephson junctions and the ability to design a large number of arbitrary located Josephson junctions allow narrowing the existing gap in design abilities for lowtemperature superconductor(LTS)and HTS circuits even with using a single YBa_(2)Cu_(3)O_(7-x) film layer.A one-layer topology of active electrically small antenna is suggested and its voltage response characteristics are considered.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB25000000)by the National Natural Science Foundation(Grant No.52172271)by the National Key R&D Program of China(Grant No.2022YFE03150200)。
文摘The second-generation high-temperature superconductor tape(2G-HTS,also known as a coated conductor)based on REBaCuO(REBa_(2)Cu_(3)O_(7-δ))exhibits high current density and potential cost-effective price/performance,compared with conventional superconducting materials.Using commercial 2G-HTS tapes,more than a dozen cable vendors had been manufacturing REBCO cables,such as the latest kilometer-class REBCO cable,which was incorporated into a civil grid on December 2021,as part of the recordbreaking 35-kV-voltage superconductor cable demonstration project in downtown Shanghai.This paper describes the development of HTS-coated conductors,then outlines the various technological routes for their preparation,reviews the artificial flux pinning of coated conductors,and finally summarizes the technological breakthroughs,the latest research advances,and provides an outlook on their application prospects.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFA0703605)the Key Basic and Applied Research Pro-gram of Guangdong Province,China(Grant No.2019B030302010)+1 种基金the NSF of China(Grant No.52122105,51971150)the Science and Technology Innovation Commission Shenzhen(Grants No.RCJC20221008092730037,20220804091920001)。
文摘Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising applications in extreme environments.The wear behavior and mechanism were systemati-cally investigated from room temperature(RT)to 750℃.The results show that the wear rate increases from∼2.65×10^(-6)mm^(3)N^(-1)m^(-1)to∼10.56×10^(-6)mm^(3)N^(-1)m^(-1)in the temperature span RT to 400℃,following abrasive wear and flash temperature-induced oxidative wear during the friction.However,at the higher temperature of 600℃,further heating due to frictional heat leads to a softening of the wear surface,resulting in a maximum wear rate of∼20.99×10^(-6)mm^(3)N^(-1)m^(-1)under softness-driven abrasive wear as well as oxidative wear.Interestingly,the wear resistance at an even higher temperature of 750℃shows a paradoxical improvement of∼7.08×10^(-6)mm^(3)N^(-1)m^(-1),which is attributed to the formation of an oxide layer with a thickness of several microns,avoiding violent wear of BMG.The re-sults demonstrate the unreported outstanding high-temperature wear resistance of the Ir-Ta-Ni-Nb BMG,especially its excellent capability to resist wear at 750℃,leading to the promising applications of BMG in the fields of aerospace,metallurgy,and nuclear industries.
文摘Bulk YBa2Cu3O7 samples were prepared by PMP method. Through adjusting ingredients and preparation procedures, a pellet with 3. 5 cm in diameter and 0. 9 cm in thickness was synthesized. A mass of 1. 3 kg on a magnet can be levitated at about 1 mm height at 77 K. The XRD and SEM indicated that magnetic lifting property can be enhanced by addition of Ag2O and Y2BaCuO5.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00112 and 2012CB921701)
文摘Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.
文摘We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.
基金Acknowledgements The work was supported by the National Basic Reseaxch Program of China, the National Natural Science Foundation of China (NSFC), and the Strategic Priority Research Program of the Chinese Academy of Sciences.
文摘Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-To superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-Tc superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: supercon- ductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- Tc superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-Tc superconductivity.