Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte...Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.展开更多
The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear...The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu_(3.8)Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating.展开更多
The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on t...The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃.展开更多
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el...Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.展开更多
A numerical optimization approach based on the finite element(FE) simulation was used to design the optimum irregular gourd-shaped pattern parameters for generating the highest hydrodynamic pressure. Then the optimum ...A numerical optimization approach based on the finite element(FE) simulation was used to design the optimum irregular gourd-shaped pattern parameters for generating the highest hydrodynamic pressure. Then the optimum parameters of the gourd-shaped surface texture were determined and the textures were processed on the stainless steel surface by the laser technology. The tribological performance of gourd-shaped surface texture was analyzed using the type of UMT2 tester, and compared with that of the regular circle surface texture and none-texture surface by considering the effect of sliding speeds and applied loads on the tribological performance. The results show that the compound factor n, the diameter ratio Dr and the texture depth Hd are more significant parameters and the optimum values are 0.618, 2.0 and 4 μm, respectively. In addition, irregular gourd-shaped surface texture with optimum parameters is the most effective in the friction reduction among the patterns investigated under different speeds and applied loads in this work. Moreover, better coordination and combination effect can be obtained by gourd-shaped surface texture. The main reason responsible for the results is the irregular symmetric nature of the gourd-shaped texture along the direction of lubricants flowing which can generate the higher fluid dynamic pressure.展开更多
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva...Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester un...A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester under various temperature conditions. It was found that the dynamic tribological performance of materials has a good consistency with the dynamic evolution of worn surfaces. At lower temperatures, the friction coefficient and wear rate were constant, resulted from the stable worn surfaces. At higher temperatures, the friction coefficient increased gradually, while the wear rate decreased, due to the increasing contact area and Fe concentration. A fade occurred above 250 ℃, which can be explained by the degradation of binders.展开更多
Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measu...Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing met...In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.展开更多
Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, many limitations exist regarding the use of DLC, for example, its tribological characteristics at high temperature, as...Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, many limitations exist regarding the use of DLC, for example, its tribological characteristics at high temperature, as well as its limited thermal stability. In this study, silicon/oxygen and silicon/nitrogen co-incorporated diamond-like carbon (Si-O-DLC and Si-N-DLC) films are studied, taking into account the thermal stability and tribological performance of these films compared with pure DLC. All the films were prepared on Si wafers, WC-Co materials, and aluminum foils using a plasma-based ion implantation (PBII) technique using acetylene (C2H2), tetramethylsilane (TMS, Si(CH3)4), oxygen (O2) and nitrogen (N2) as plasma sources. The structure of the films was characterized using Raman spectroscopy. The thermal stability of the films was measured using thermogravimetric and differential thermal analysis (TG-DTA). The friction coefficient of the films was assessed using ball-on-disk friction testing. The results indicate that Si-N-DLC films present better thermal stability due to the presence of Si-O networks in the films. The Si-N-DLC (23 at.%Si, 8 at.%N) film was affected using thermal annealing in an air atmosphere with increasing temperature until 500°C. The film can also resist thermal shock by cycling 10 times between the various temperatures and air atmosphere until 500°C. Further, Si-O-DLC and Si-N-DLC films exhibit excellent tribological performance, especially the Si-N-DLC (23 at.%Si, 8 at.%N) film, which exhibits excellent tribological performance at 500°C in an air atmosphere. It is concluded that Si-O-DLC and Si-N-DLC films improve upon the thermal stability and tribological performance of DLC.展开更多
Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribologic...Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.展开更多
Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organot...Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organotin as lubricant additive are evaluated with a four-ball friction and wear tester. These experiments indicate that the wear scar diameter (WSD) and friction coefficient are diminished while the load-carrying capability increased by comparison with that of base oil. The elemental composition of the boundary lubricating film is examined by means of Auger electron spectroscopy (AES). Synergistic effect is found in the load-carrying capability of the complex of SN and sulfured olefin. The analytical results of AES indicate that the good performance of stannous naphthenate is attributed to the formation of a boundary lubricating film containing Sn on the rubbed surface.展开更多
Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this articl...Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this article, the fluorine and silicon incorporated diamond-like carbon (F-DLC and Si-DLC) films are studied, taking into account the tribological properties of these films compared with pure DLC. The structures of the films were characterized using Auger electron spectroscopy and Raman spectroscopy. The hardness and elastic modulus were evaluated by nanoindentation hardness testing. The friction behavior was assessed using ball-on-disk friction testing and optical microscopy. The results indicated that the deposited DLC films contained 0.6 - 2.1 at.% F and 26.7 - 38.4 at.% Si. A decrease in the hardness and elastic modulus was obtained as F increased in content, which was the opposite of the behavior observed in the Si-DLC films. This was due to the shifting in the G-peak position, which is related to the sp3 bonding fraction in the film. When measured in ambient air, the addition of Si into the DLC film strongly influenced the friction coefficient, whereas doping with F only slightly influenced the films, as evidenced by their wear scars. In addition, only a 26.7 at.% Si-DLC film showed a very low friction coefficient when measured in dry air. This was attributed to the formation of silicon-rich transfer layer on the ball surfaces. Therefore, the addition of Si with 26.7 at.% content to a DLC film can be considered beneficial for improving tribological performance.展开更多
We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are...We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs.展开更多
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi...Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.展开更多
Deep eutectic solvents(DESs)are acknowledged as a novel class of functional liquid.DESs share similar physical properties with ionic liquids(ILs)and have the potential to be a novel class of lubricants.In this study,t...Deep eutectic solvents(DESs)are acknowledged as a novel class of functional liquid.DESs share similar physical properties with ionic liquids(ILs)and have the potential to be a novel class of lubricants.In this study,two DESs,namely tetrabutylammonium chloride-decanoic acid DES(C4-DES)and methyl tricaprylmethylammonium chloride-decanoic acid DES(C8-DES),were synthesized,and their physico-chemical properties and tribological performances were evaluated.Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms.Results show that the coefficient of friction(COF)and wear were reduced by approximately 29%and 91%for the C4-DES,and 36%and 94%for the C8-DES,compared to an ester base oil.The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid(DEAC),whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures.In addition to the adsorbed film,worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES.The composition of the film was studied,and the lubrication mechanisms of the two DESs were discussed.展开更多
Advancements in power electronics necessitate dielectric polymer films capable of operating at high temperatures and possessing high energy density.Although significant strides have been achieved by integrating inorga...Advancements in power electronics necessitate dielectric polymer films capable of operating at high temperatures and possessing high energy density.Although significant strides have been achieved by integrating inorganic fillers into high-temperature polymer matrices,the inherently low dielectric constants of these matrices have tempered the magnitude of success.In this work,we report an innovative nanocomposite based on sulfonylated polyimide(SPI),distinguished by the incorporation of sulfonyl groups within the SPI backbone and the inclusion of wide bandgap hafnium dioxide(HfO_(2))nanofillers.The nanocomposite has demonstrated notable enhancements in thermal stability,dielectric properties,and capacitive performance at elevated temperatures.Detailed simulations at both molecular and mesoscopic levels have elucidated the mechanisms behind these improvements,which could be attributed to confined segmental motion,an optimized electronic band structure,and a diminished incidence of dielectric breakdown ascribed to the presence of sulfonyl groups.Remarkably,the SPI-HfO_(2)nanocomposite demonstrates a high charge-discharge efficiency of 95.7%at an elevated temperature of 150℃and an applied electric field of 200 MV/m.Furthermore,it achieves a maximum discharged energy density of 2.71 J/cm^(3),signalling its substantial potential for energy storage applications under extreme conditions.展开更多
基金Funded by the National Natural Science Foundation of China (No. 51905506)。
文摘Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.
基金the financial support from the Gansu Provincial Natural Science Foundation (No. 20JR5RA471)the National Natural Science Foundation of China (No. 51365024)。
文摘The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu_(3.8)Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating.
基金Funded by the Joint Fund of Ministry of Education for Equipment Pre-research(No.6141A02022250)the Fundamental Research Funds for the Central Universities,China(No.WUT:2021III003XZ)。
文摘The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃.
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.
基金financialy supported by the National Natural Science Foundation of China(nos.22078069,22178069,51903254)
文摘Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices.
基金Project(51305023) supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B20) supported by the Fundamental Research Funds for the Central Universities of China
文摘A numerical optimization approach based on the finite element(FE) simulation was used to design the optimum irregular gourd-shaped pattern parameters for generating the highest hydrodynamic pressure. Then the optimum parameters of the gourd-shaped surface texture were determined and the textures were processed on the stainless steel surface by the laser technology. The tribological performance of gourd-shaped surface texture was analyzed using the type of UMT2 tester, and compared with that of the regular circle surface texture and none-texture surface by considering the effect of sliding speeds and applied loads on the tribological performance. The results show that the compound factor n, the diameter ratio Dr and the texture depth Hd are more significant parameters and the optimum values are 0.618, 2.0 and 4 μm, respectively. In addition, irregular gourd-shaped surface texture with optimum parameters is the most effective in the friction reduction among the patterns investigated under different speeds and applied loads in this work. Moreover, better coordination and combination effect can be obtained by gourd-shaped surface texture. The main reason responsible for the results is the irregular symmetric nature of the gourd-shaped texture along the direction of lubricants flowing which can generate the higher fluid dynamic pressure.
基金supported by the National Key R&D Program of China (2016YFB0100301)the National Natural Science Foundation of China (51802020, 51802019)+1 种基金the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Young Elite Scientists Sponsorship Program by CAST (2018QNRC001。
文摘Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.
基金Funded by the National High-Tech R&D Program of China(863 Program)(SS2015AA042502)
文摘A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester under various temperature conditions. It was found that the dynamic tribological performance of materials has a good consistency with the dynamic evolution of worn surfaces. At lower temperatures, the friction coefficient and wear rate were constant, resulted from the stable worn surfaces. At higher temperatures, the friction coefficient increased gradually, while the wear rate decreased, due to the increasing contact area and Fe concentration. A fade occurred above 250 ℃, which can be explained by the degradation of binders.
文摘Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
基金Funded by the National Natural Science Foundation of China(Nos.51378242 and 51008146)the Transportation Industry Science and Technology Project of Beijing(No.kj2013-2-14)
文摘In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances.
文摘Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, many limitations exist regarding the use of DLC, for example, its tribological characteristics at high temperature, as well as its limited thermal stability. In this study, silicon/oxygen and silicon/nitrogen co-incorporated diamond-like carbon (Si-O-DLC and Si-N-DLC) films are studied, taking into account the thermal stability and tribological performance of these films compared with pure DLC. All the films were prepared on Si wafers, WC-Co materials, and aluminum foils using a plasma-based ion implantation (PBII) technique using acetylene (C2H2), tetramethylsilane (TMS, Si(CH3)4), oxygen (O2) and nitrogen (N2) as plasma sources. The structure of the films was characterized using Raman spectroscopy. The thermal stability of the films was measured using thermogravimetric and differential thermal analysis (TG-DTA). The friction coefficient of the films was assessed using ball-on-disk friction testing. The results indicate that Si-N-DLC films present better thermal stability due to the presence of Si-O networks in the films. The Si-N-DLC (23 at.%Si, 8 at.%N) film was affected using thermal annealing in an air atmosphere with increasing temperature until 500°C. The film can also resist thermal shock by cycling 10 times between the various temperatures and air atmosphere until 500°C. Further, Si-O-DLC and Si-N-DLC films exhibit excellent tribological performance, especially the Si-N-DLC (23 at.%Si, 8 at.%N) film, which exhibits excellent tribological performance at 500°C in an air atmosphere. It is concluded that Si-O-DLC and Si-N-DLC films improve upon the thermal stability and tribological performance of DLC.
基金The authors acknowledge the financial supports from Baosteel-Australia Joint Research&Development Center(BAJC)under the project of BA17004 and Australian Research Council(ARC)under Linkage Project Program(LP150100591)。
文摘Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.
文摘Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organotin as lubricant additive are evaluated with a four-ball friction and wear tester. These experiments indicate that the wear scar diameter (WSD) and friction coefficient are diminished while the load-carrying capability increased by comparison with that of base oil. The elemental composition of the boundary lubricating film is examined by means of Auger electron spectroscopy (AES). Synergistic effect is found in the load-carrying capability of the complex of SN and sulfured olefin. The analytical results of AES indicate that the good performance of stannous naphthenate is attributed to the formation of a boundary lubricating film containing Sn on the rubbed surface.
文摘Diamond-like carbon (DLC) is a metastable amorphous film that exhibits unique properties. However, a number of limitations exist regarding the use of DLC, for instance, its tribological characteristics. In this article, the fluorine and silicon incorporated diamond-like carbon (F-DLC and Si-DLC) films are studied, taking into account the tribological properties of these films compared with pure DLC. The structures of the films were characterized using Auger electron spectroscopy and Raman spectroscopy. The hardness and elastic modulus were evaluated by nanoindentation hardness testing. The friction behavior was assessed using ball-on-disk friction testing and optical microscopy. The results indicated that the deposited DLC films contained 0.6 - 2.1 at.% F and 26.7 - 38.4 at.% Si. A decrease in the hardness and elastic modulus was obtained as F increased in content, which was the opposite of the behavior observed in the Si-DLC films. This was due to the shifting in the G-peak position, which is related to the sp3 bonding fraction in the film. When measured in ambient air, the addition of Si into the DLC film strongly influenced the friction coefficient, whereas doping with F only slightly influenced the films, as evidenced by their wear scars. In addition, only a 26.7 at.% Si-DLC film showed a very low friction coefficient when measured in dry air. This was attributed to the formation of silicon-rich transfer layer on the ball surfaces. Therefore, the addition of Si with 26.7 at.% content to a DLC film can be considered beneficial for improving tribological performance.
文摘We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs.
基金Supported by the National Natural Science Foundation of China(52288101).
文摘Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.
基金the financial support from the National Natural Science Foundation of China(No.51975560),Key Projects of Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences(No.KJZLZD-1)Taishan Scholars Project of Key R&D Program of Shandong Province(No.2020CXGC11002).
文摘Deep eutectic solvents(DESs)are acknowledged as a novel class of functional liquid.DESs share similar physical properties with ionic liquids(ILs)and have the potential to be a novel class of lubricants.In this study,two DESs,namely tetrabutylammonium chloride-decanoic acid DES(C4-DES)and methyl tricaprylmethylammonium chloride-decanoic acid DES(C8-DES),were synthesized,and their physico-chemical properties and tribological performances were evaluated.Post-analysis of the rubbing surfaces used multiple techniques to gain insights into the lubrication mechanisms.Results show that the coefficient of friction(COF)and wear were reduced by approximately 29%and 91%for the C4-DES,and 36%and 94%for the C8-DES,compared to an ester base oil.The friction reduction behavior of the DESs is attributed to the monolayer adsorption of the polar group in the decanoic acid(DEAC),whose effectiveness is affected by the component of the ammonium salts in the DESs and the operating temperatures.In addition to the adsorbed film,worn surface analysis revealed that an ultra-thin tribochemical film with a thickness of 3–7 nm was formed on the surfaces lubricated with the C8-DES.The composition of the film was studied,and the lubrication mechanisms of the two DESs were discussed.
基金supported by the National Natural Science Foundation of China(Nos.52107232,52377026 and 52301192)China Postdoctoral Science Foundation(No.2021M702563)+2 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE22312)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)and Fundamental Research Funds for the Central Universities(No.xzy012024004).
文摘Advancements in power electronics necessitate dielectric polymer films capable of operating at high temperatures and possessing high energy density.Although significant strides have been achieved by integrating inorganic fillers into high-temperature polymer matrices,the inherently low dielectric constants of these matrices have tempered the magnitude of success.In this work,we report an innovative nanocomposite based on sulfonylated polyimide(SPI),distinguished by the incorporation of sulfonyl groups within the SPI backbone and the inclusion of wide bandgap hafnium dioxide(HfO_(2))nanofillers.The nanocomposite has demonstrated notable enhancements in thermal stability,dielectric properties,and capacitive performance at elevated temperatures.Detailed simulations at both molecular and mesoscopic levels have elucidated the mechanisms behind these improvements,which could be attributed to confined segmental motion,an optimized electronic band structure,and a diminished incidence of dielectric breakdown ascribed to the presence of sulfonyl groups.Remarkably,the SPI-HfO_(2)nanocomposite demonstrates a high charge-discharge efficiency of 95.7%at an elevated temperature of 150℃and an applied electric field of 200 MV/m.Furthermore,it achieves a maximum discharged energy density of 2.71 J/cm^(3),signalling its substantial potential for energy storage applications under extreme conditions.