期刊文献+
共找到12,379篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of joint spacing and rock characteristics on the toppling stability of cut rock slope through a simplified limit equilibrium method
1
作者 ZHANG Xue-peng JIANG Yu-jing +6 位作者 DU Yan WANG Ke-peng CAI Yue WANG Xing-da SU Hang GOLSANAMI Naser LIU Bao-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2694-2702,共9页
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a... Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together. 展开更多
关键词 slope stability flexural toppling rock slope simplified limit equilibrium method
下载PDF
Infiltration,runoff,and slope stability behaviors of infinite slope with macropores based on an improved Green–Ampt model
2
作者 LI Shanghui WU Guoxiong +2 位作者 QUE Yun JIANG Zhenliang CHENG Gaoyun 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2220-2235,共16页
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e... Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h. 展开更多
关键词 Macropore slope Green–Ampt infiltration model Equivalent wetting front Ponding response time slope stability
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
3
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope slope stability analysis Rainfall effect Strength reduction
下载PDF
Flume experiments to study fine-grain migration and its impact on slope stability
4
作者 WANG Baoliang WANG Quanwei +2 位作者 LI Yong YAO Zhenguo WANG Hongfei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3552-3566,共15页
Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist... Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability. 展开更多
关键词 Fine-grain migration slope stability Pore-water pressure Artificial rainfall Soil structure Flume experiments
下载PDF
Three-dimensional stability calculation method for high and large composite slopes formed by mining stope and inner dump in adjacent open pits
5
作者 Zuchao Liang Dong Wang +4 位作者 Guanghe Li Guangyu Sun Mingyu Yu Dong Xia Chunjian Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期507-520,共14页
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi... The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis. 展开更多
关键词 Composite slope Destabilization mechanism 3D mechanical effect Three-dimensional stability Coordinated development distance
下载PDF
Classification and rating of disintegrated dolomite strata for slope stability analysis
6
作者 Wenlian Liu Xinyue Gong +3 位作者 Jiaxing Dong Hanhua Xu Peixuan Dai Shengwei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2552-2562,共11页
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin... Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes. 展开更多
关键词 Disintegrated dolomite slope Basic quality(BQ) slope stability probability classification (SSPC) Rock mass quality classification Limit equilibrium method(LEM)
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
7
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis slope stability Himalayan road Static and dynamic conditions
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
8
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques
9
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 slope stability analysis Monte Carlo simulation Neural network(NN) Transfer learning(TL)
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:5
10
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 slope stability prediction Long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases 被引量:5
11
作者 Guangjin Wang Bing Zhao +2 位作者 Bisheng Wu Chao Zhang Wenlian Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期47-59,共13页
Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77... Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering. 展开更多
关键词 slope stability prediction Machine learning algorithm Dimensionality reduction visualization Random cross validation Coefficient of variation
下载PDF
A stability evaluation method for deep-seated toppling in the upper Lancang river,Southwestern China
12
作者 Yibing Ning Huiming Tang +3 位作者 Jianbing Peng Yanjun Shen John V.Smith Bocheng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2388-2410,共23页
Deep-seated toppling in the upper reaches of the Lancang River,southwest China involves deformations exceeding 100 m in depth.The slope deformation is initiated by river downcutting and evolves distinctive characteris... Deep-seated toppling in the upper reaches of the Lancang River,southwest China involves deformations exceeding 100 m in depth.The slope deformation is initiated by river downcutting and evolves distinctive characteristics with a depth of river incision.In this study,we propose a system for evaluating the stability of deep-seated toppled slopes in different evolutionary stages.This system contains identification criteria for each evolutionary stage and provides the corresponding stability evaluation methods.Based on the mechanical and kinematic analysis of slope blocks,the specific stage of slope movement can be identified in the field through outcrop mapping,in situ tests,surface displacement monitoring,and adit and borehole explorations.The stability evaluation methods are established based on the limiting equilibrium theory and the strain compatibility between the undisturbed zone and the toppled zone.Finally,several sample slopes in different evolution stages have been investigated to verify the applicability and accuracy of the proposed stability evaluation system.The results indicate that intense tectonic activity and rapid river incision lead to a maximum principal stress ratio exceeding 10 near the slope surface,thus triggering widespread toppling deformations along the river valley.When considering the losses of joint cohesion during the further rotation process,the safety factor of the slope drops by 7%e28%.The self-stabilization of toppling deformation can be recognized by the layer symmetry configuration after the free rotation of the deflected layers.Intensely toppled rock blocks mainly suffer sliding failures beyond the layer symmetry condition.The factor of safety of the K73 rockslide decreased from 1.17 to 0.87 by considering the development of the potential sliding surface and the toesaturated zone. 展开更多
关键词 stability evaluation Deep-seated toppling Evolutionary process Reservoir impoundment Rock slope
下载PDF
Stability analysis of a slope containing water-sensitive mudstone considering different rainfall conditions at an open-pit mine 被引量:2
13
作者 Guoyu Yang Yanlong Chen +3 位作者 Xuanyu Liu Ri Yang Yafei Zhang Jialong Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期233-253,共21页
Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively under... Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively understand the water-sensitivity of mudstone and reveal its infuence on slope stability, we took the working slope containing water-sensitive mudstone of Shengli No.1 open-pit coal mine in Xilinhot, Inner Mongolia, China, as an example. Mudstone samples taken from the working slope were remodeled and saturated, and then triaxial tested to obtain the efective cohesion and efective internal friction angle. The flter paper method was used to obtain the soil–water characteristic curve of unsaturated mudstone. The pore structure of mudstone samples with diferent water contents were analyzed using the mercury intrusion porosimetry tests combined with the fractal dimension. The total pore content of the mudstone sample with lower water content is greater than that of the mudstone sample with higher water content. The mesopores are more in the mudstone sample with lower water content, while the small pores are more in the mudstone sample with higher water content. The variation of water content will change the complexity of mudstone pore structure. The higher the water content, the simpler the mudstone pore structure and the smoother the pore surface. Numerical calculations were conducted on the stability of the working slope under diferent rainfall conditions. The efective saturation on the mudstone layer surface changed and the plastic strain all occurred on the mudstone steps under diferent rainfall conditions. The key to preventing landslide of the slope containing water-sensitive mudstone in Shengli No.1 open-pit coal mine is to control the deformation and sliding of the mudstone layer. 展开更多
关键词 Water-sensitivity SWCC Pore structure Rainfall infltration slope stability
下载PDF
Improved Prediction of Slope Stability under Static and Dynamic Conditions Using Tree-BasedModels 被引量:2
14
作者 Feezan Ahmad Xiaowei Tang +2 位作者 Jilei Hu Mahmood Ahmad Behrouz Gordan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期455-487,共33页
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a... Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research. 展开更多
关键词 slope stability seismic excitation static condition random tree reduced error pruning tree
下载PDF
Theoretical study on stability evolution of soft and hard interbedded bedding reservoir slopes 被引量:1
15
作者 WU Qiong ZHANG Bo +3 位作者 TANG Hui-ming WANG di LIU Zhi-qi LIN Zhi-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2744-2755,共12页
Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock... Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area. 展开更多
关键词 Soft and hard interbedded rock slope Limit equilibrium method Spatial variation Wetting and drying cycles Plane failure stability evolution
下载PDF
Stability of loess high-fill slope based on monitored soil moisture changes
16
作者 XueLing Yong Yu Zhang +4 位作者 YunLong Hou BingBing Han Ning An Hui Zhang Ying Ma 《Research in Cold and Arid Regions》 CSCD 2023年第4期191-201,共11页
This paper aims to assess the influence of moisture content changes during rainfall on the stability of loess high-fill slopes by taking a loess high-fill slope in Lanzhou City as an example.First,according to the moi... This paper aims to assess the influence of moisture content changes during rainfall on the stability of loess high-fill slopes by taking a loess high-fill slope in Lanzhou City as an example.First,according to the moisture content monitoring data collected from a slope online monitoring system,direct shear tests were performed on soil samples of different moisture content to determine the relationship between the shear strength parameters and moisture content.Next,a coupled hydro-mechanical model with soil shear strength related to moisture content was established and used to analyze 16 working conditions with various rainfall intensities and durations for two cases:shear strength parameters from the site exploration report and those from this study.Finally,the results from the two cases were compared regarding the changes in stresses and displacements after rainfall infiltration to analyze the influence of moisture content on the stability of loess high-fill slopes.The conclusions are as follows:(1)Segmental relationship equations of cohesion and angle of internal friction were established for loess with various moisture content.(2)Under the conditions of different rainfall intensities,significant differences were observed in the trends of slope stress and displacement changes.(3)The slope displacement occurred in the shallow soil layer within about 12.5 m from the slope top,and the plastic strain concentrated in the soil layer within about 6 m from the slope top.(4)The results of slope stability analyses based on moisture content monitoring data are more in line with the observed. 展开更多
关键词 Rainfall infiltration Seepage stress coupling LOESS High fill slope stability
下载PDF
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
17
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 Soil and water stability Expansive soil slope Polymer waterproof coating Model test Soil erosion
下载PDF
UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope
18
作者 Riccardo SALVINI Luisa BELTRAMONE +5 位作者 Vivien DE LUCIA Andrea ERMINI Claudio VANNESCHI Caterina ZEI Daniele SILVESTRI Andrea RINDINELLA 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2804-2821,共18页
This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in th... This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions. 展开更多
关键词 GroundPenetrating Radar(GPR) Unmanned AerialVehicle e(UAV) GPR-drone integrated system slope stability analysis Static and dynamic loading conditions
下载PDF
Critical Assessment of Slope Stability: A Case Study on the Toffo-Lalo Road Project
19
作者 Guy Oyéniran Adeoti Judicaël Koffi Agbelele +2 位作者 Crespin Prudence Yabi Rufin Nongnidé Kinhoun Éric Adéchina Alamou 《Modern Mechanical Engineering》 2023年第4期77-100,共24页
This article systematically delves into a comprehensive analysis of the latest and most advanced techniques for the assessment of slope stability. It particularly focuses on strategies aimed at enhancing slope stabili... This article systematically delves into a comprehensive analysis of the latest and most advanced techniques for the assessment of slope stability. It particularly focuses on strategies aimed at enhancing slope stability in road construction. In addition to this analysis, the article presents an illustrative case study centered on the Toffo-Lalo Road Project. The core objective of this paper is to scrutinize the stability of large embankments in road construction, with a specific emphasis on the development and asphalt overlay of the Toffo-Lalo road. This scrutiny is conducted through the utilization of stability calculation software, GEOSTUDIO2018, specifically its SLOPE/W module. Within this framework, a detailed model of the cutbank located at KP1+750-2+250 was meticulously developed. This model takes into account the physical-mechanical characteristics of the soil at the site, as well as the topographic layout. Its attributes include a cohesion value of 11.3 Kpa, a density of 16.57 KN/m<sup>3</sup>, and a friction angle of 27˚. The modeling results, employing the Morgenstern-Price method—an approach renowned for its adherence to equilibrium conditions and provision of precise results—conclude that the safety coefficient (Fs = 1.429) prior to any reinforcement signifies a critical state of slope stability. To address this, the article explores the implementation of reinforcement techniques, particularly focusing on rigid inclusions like nailing and piles. The modeling exercises reveal a noteworthy enhancement in the safety coefficient (Fs) post-reinforcement. Furthermore, the article undertakes a parametric study to optimize the reinforcement strategies. This analysis highlights that anchoring at 0˚ downward relative to the horizontal plane and employing a pile angle of 90˚ represent the most favorable approaches. These measures yield safety coefficients of 3.60 and 2.34, respectively, indicating substantially improved slope stability. 展开更多
关键词 GEOslope Morgenstern-Price Method Numerical Modelling Safety Coefficient Soil Cohesion and slope stability
下载PDF
Study of Slope Stability Using the Bishop Slice Method: An Approach Combining Analytical and Numerical Analyses
20
作者 Koffi Judicael Agbelele Guy Oyeniran Adeoti +1 位作者 Daniel Yémalin Agossou Gérard Gbaguidi Aïsse 《Open Journal of Applied Sciences》 2023年第8期1446-1456,共11页
The importance of slope stability in civil engineering cannot be underestimated, as failure of these structures can result in significant damage to downstream infrastructure and property. In this study, we used the Bi... The importance of slope stability in civil engineering cannot be underestimated, as failure of these structures can result in significant damage to downstream infrastructure and property. In this study, we used the Bishop slice method, combining both an analytical approach and a numerical approach using the SLOPE/W module of the Geostudio 2018 R2 software. The results obtained from these two methods showed that increasing soil cohesion helps to improve slope stability. The safety coefficients obtained by the analytical method vary between 0.621 and 1.422, while those obtained by the numerical method vary between 0.622 and 1.447, for cohesion values ranging from 4 kPa to 20 kPa. The results obtained by these two methods show a linear relationship between the safety coefficients and soil cohesion. The equation of the analytical method is y = 0.0496x + 0.4407, while that of the numerical method is y = 0.0512x + 0.4357. The results of the analytical approach indicate that a safety coefficient of 1.5 is reached when the cohesion reaches a value of 22 kPa, while the numerical approach shows a safety coefficient of 1.5 reached at a cohesion of 21 kPa. The difference between these two cohesion values can be explained by the number of slices used, which is smaller in the analytical method. However, the equation derived from the analytical method can be used as a general guide to assess the evolution of the safety coefficient of an overloaded slope in long-term behaviour with an increase in cohesion. However, it is important to stress the importance of verification using specialised software based on the finite element method. 展开更多
关键词 slope stability Safety Factor COHESION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部