Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
With the rapid development of genetic analysis techniques and crop population size,phenotyping has become the bottleneck restricting crop breeding.Breaking through this bottleneck will require phenomics,defined as the...With the rapid development of genetic analysis techniques and crop population size,phenotyping has become the bottleneck restricting crop breeding.Breaking through this bottleneck will require phenomics,defined as the accurate,high-throughput acquisition and analysis of multi-dimensional phenotypes during crop growth at organism-wide levels,ranging from cells to organs,individual plants,plots,and fields.Here we offer an overview of crop phenomics research from technological and platform viewpoints at various scales,including microscopic,ground-based,and aerial phenotyping and phenotypic data analysis.We describe recent applications of high-throughput phenotyping platforms for abiotic/biotic stress and yield assessment.Finally,we discuss current challenges and offer perspectives on future phenomics research.展开更多
The ability to screen larger populations with fewer replicates and non-destructive measurements is one advantage of high-throughput phenotyping(HTP)over traditinal phenotyping techniques.In this study,two wheat access...The ability to screen larger populations with fewer replicates and non-destructive measurements is one advantage of high-throughput phenotyping(HTP)over traditinal phenotyping techniques.In this study,two wheat accessions were grown in a controlled-environment with a moderate drought imposed from stem elongation to post-anthesis.Red-green-blue(RGB)imaging was performed on 17 of the 22 d following the start of drought imposition.Destructive measurements from all plants were performed at the conclusion of the experiment.The effect of line was signifcant for shoot dry matter,spike dry matter,root dry matter,and tller number,while the water treatment was significant on shoot dry matter and root dry matter.The temporal,non-destructive nature of HTP allowed the drought treatment to be significantly differentiated from the well-watered treatment after 6 d in a line from Argentina and 9 d in a line from Chile.This difference of 3 d indicated an increased degree of drought tolerance in the line from Chile.Furthermore,HTP from the final day of imaging accurately predicted reference plant height(r=1),shoot dry matter(r=0.95)and tller number(r=0.91).This experiment ilustrates the potential of HTP and its use in modeling plant growth and development.展开更多
Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid a...Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth,yield,and adaptation to biotic or abiotic stress.Researchers have conducted extensive experiments on HTP and developed techniques including spectral,fluorescence,thermal,and three-dimensional imaging to measure the morphological,physiological,and pathological resistance traits of cotton.In addition,ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems.This review paper highlights the techniques and recent developments for HTP in cotton,reviews the potential applications according to morphological and physiological traits of cotton,and compares the advantages and limitations of these HTP systems when used in cotton cropping systems.Overall,the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton.However,because of its relative novelty,HTP has some limitations that constrains the ability to take full advantage of what it can offer.These challenges need to be addressed to increase the accuracy and utility of HTP,which can be done by integrating analytical techniques for big data and continuous advances in imaging.展开更多
Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to rev...Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.展开更多
Development of high-throughput phenotyping technologies has progressed considerably in the last 10 years.These technologies provide precise measurements of desired traits among thousands of field-grown plants under di...Development of high-throughput phenotyping technologies has progressed considerably in the last 10 years.These technologies provide precise measurements of desired traits among thousands of field-grown plants under diversified environments;this is a critical step towards selection of better performing lines as to yield,disease resistance,and stress tolerance to accelerate crop improvement programs.High-throughput phenotyping techniques and platforms help unrave-ling the genetic basis of complex traits associated with plant growth and development and targeted traits.This review focuses on the advancements in technologies involved in high-throughput,field-based,aerial,and unmanned platforms.Development of user-friendly data management tools and softwares to better understand phenotyping will increase the use of field-based high-throughput techniques,which have potential to revolutionize breeding strategies and meet the future needs of stakeholders.展开更多
Since whole-genome sequencing of many crops has been achieved,crop functional genomics studies have stepped into the big-data and high-throughput era.However,acquisition of large-scale phenotypic data has become one o...Since whole-genome sequencing of many crops has been achieved,crop functional genomics studies have stepped into the big-data and high-throughput era.However,acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies.Nevertheless,recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years.In this article,we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades.We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies.Finally,we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap.It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.展开更多
Phenomics studies a variety of phenotypic plant traits and is the key to understanding genetic functions and environmental effects on plants. With the rapid development of genomics, many plant phenotyping platforms ha...Phenomics studies a variety of phenotypic plant traits and is the key to understanding genetic functions and environmental effects on plants. With the rapid development of genomics, many plant phenotyping platforms have been developed to study complex traits related to the growth, yield, and adaptation to biotic or abiotic stress, but the ability to acquire high-throughput phenotypic data has become the bottleneck in the study of plant genomics. In recent years, researchers around the world have conducted extensive experiments and research on high-throughput, image-based phenotyping techniques,including visible light imaging, fluorescence imaging,thermal imaging, spectral imaging, stereo imaging, and tomographic imaging. This paper considers imaging technologies developed in recent years for high-throughput phenotyping, reviews applications of these technologies in detecting and measuring plant morphological, physiological, and pathological traits, and compares their advantages and limitations.展开更多
Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health...Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.展开更多
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
Background: Nowadays, emergence of Carbapenemase-Producing Enterobacterales (CPE) throughout the world has become a public health problem, especially in countries with limited resources. In recent years, CPE of type O...Background: Nowadays, emergence of Carbapenemase-Producing Enterobacterales (CPE) throughout the world has become a public health problem, especially in countries with limited resources. In recent years, CPE of type OXA-48 (Ambler class D) have been identified in Dakar. The aim of this study was to evaluate the phenotypic detection of OXA-48 CPE using a temocillin disc (30 μg). Methodology: A retrospective study was carried out at Medical Biology Laboratory of Pasteur Institute in Dakar on Ertapenem-Resistant Enterobacterales (ERE) strains isolated from 2015 to 2017. These strains were then tested with a 30 μg temocillin disc. Any strain resistant to temocillin (inhibition diameter Results: Forty-one ERE isolated during the study period were tested, of which 34 (82.9%) were OXA-48 based on phenotypic detection using temocillin disc and confirmed by PCR (100%). OXA-48 CPE strains detected were composed of Klebsiella pneumoniae (n = 14;41.2%), Enterobacter cloacae (n = 8;23.5%), Escherichia coli (n = 7, 20.5%), Citrobacter freundii (n = 3;8.8%), Cronobacter sakazakii (n = 1;3%) and Morganella morganii (n = 1;3%). Conclusion: Temocillin resistance has a good positive predictive value for detecting OXA-48 CPE by phenotypic method, confirmed by PCR. Temocillin is therefore a good marker for detection of OXA-48 CPE except Hafnia alvei.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with ex...Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.展开更多
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laborat...Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.展开更多
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le...Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.展开更多
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas...In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.展开更多
Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were hi...Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.展开更多
Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were admi...Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.展开更多
Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By id...Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By identifying predisposing factors for postoperative sepsis,clinicians can implement targeted interventions,potentially improving outcomes.This study outlines a workflow for the subphenotype methodology in the context of laparoscopic surgery,along with its practical application.Methods:This study utilized data routinely available in clinical case systems,enhancing the applicability of our findings.The data included vital signs,such as respiratory rate,and laboratory measures,such as blood sodium levels.The process of categorizing clinical routine data involved technical complexities.A correlation heatmap was used to visually depict the relationships between variables.Ordering points were used to identify the clustering structure and combined with Consensus K clustering methods to determine the optimal categorization.Results:Our study highlighted the intricacies of identifying clinical subphenotypes following laparoscopic surgery,and could thus serve as a valuable resource for clinicians and researchers seeking to explore disease heterogeneity in clinical settings.By simplifying complex methodologies,we aimed to bridge the gap between technical expertise and clinical application,fostering an environment where professional medical knowledge is effectively utilized in subphenotyping research.Conclusion:This tutorial could primarily serve as a guide for beginners.A variety of clustering approaches were explored,and each step in the process contributed to a comprehensive understanding of clinical subphenotypes.展开更多
●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patient...●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.展开更多
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by the National Key Research and Development Program of China(2016YFD0100101-18,2020YFD1000904-1-3)the National Natural Science Foundation of China(31601216,31770397)Fundamental Research Funds for the Central Universities(2662019QD053,2662020ZKPY017)。
文摘With the rapid development of genetic analysis techniques and crop population size,phenotyping has become the bottleneck restricting crop breeding.Breaking through this bottleneck will require phenomics,defined as the accurate,high-throughput acquisition and analysis of multi-dimensional phenotypes during crop growth at organism-wide levels,ranging from cells to organs,individual plants,plots,and fields.Here we offer an overview of crop phenomics research from technological and platform viewpoints at various scales,including microscopic,ground-based,and aerial phenotyping and phenotypic data analysis.We describe recent applications of high-throughput phenotyping platforms for abiotic/biotic stress and yield assessment.Finally,we discuss current challenges and offer perspectives on future phenomics research.
基金Support was from the College of Agriculture of Purdue University to Mohsen Mohammadi,USDA(1013073).
文摘The ability to screen larger populations with fewer replicates and non-destructive measurements is one advantage of high-throughput phenotyping(HTP)over traditinal phenotyping techniques.In this study,two wheat accessions were grown in a controlled-environment with a moderate drought imposed from stem elongation to post-anthesis.Red-green-blue(RGB)imaging was performed on 17 of the 22 d following the start of drought imposition.Destructive measurements from all plants were performed at the conclusion of the experiment.The effect of line was signifcant for shoot dry matter,spike dry matter,root dry matter,and tller number,while the water treatment was significant on shoot dry matter and root dry matter.The temporal,non-destructive nature of HTP allowed the drought treatment to be significantly differentiated from the well-watered treatment after 6 d in a line from Argentina and 9 d in a line from Chile.This difference of 3 d indicated an increased degree of drought tolerance in the line from Chile.Furthermore,HTP from the final day of imaging accurately predicted reference plant height(r=1),shoot dry matter(r=0.95)and tller number(r=0.91).This experiment ilustrates the potential of HTP and its use in modeling plant growth and development.
文摘Recent technological advances in cotton(Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis.High-throughput phenotyping(HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth,yield,and adaptation to biotic or abiotic stress.Researchers have conducted extensive experiments on HTP and developed techniques including spectral,fluorescence,thermal,and three-dimensional imaging to measure the morphological,physiological,and pathological resistance traits of cotton.In addition,ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems.This review paper highlights the techniques and recent developments for HTP in cotton,reviews the potential applications according to morphological and physiological traits of cotton,and compares the advantages and limitations of these HTP systems when used in cotton cropping systems.Overall,the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton.However,because of its relative novelty,HTP has some limitations that constrains the ability to take full advantage of what it can offer.These challenges need to be addressed to increase the accuracy and utility of HTP,which can be done by integrating analytical techniques for big data and continuous advances in imaging.
基金Participation of Jos Luis Araus and María Dolors Serret was supported by the Spanish Project AGL2010-20180 (subprogram AGR)the FP7 European Project OPTICHINA (266045)
文摘Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.
文摘Development of high-throughput phenotyping technologies has progressed considerably in the last 10 years.These technologies provide precise measurements of desired traits among thousands of field-grown plants under diversified environments;this is a critical step towards selection of better performing lines as to yield,disease resistance,and stress tolerance to accelerate crop improvement programs.High-throughput phenotyping techniques and platforms help unrave-ling the genetic basis of complex traits associated with plant growth and development and targeted traits.This review focuses on the advancements in technologies involved in high-throughput,field-based,aerial,and unmanned platforms.Development of user-friendly data management tools and softwares to better understand phenotyping will increase the use of field-based high-throughput techniques,which have potential to revolutionize breeding strategies and meet the future needs of stakeholders.
基金the National Key Research and Development Program of China(2016YFD0100101-18,2016YFD0100103)the National Natural Science Foundation of China(31770397,21800305)+2 种基金the Fundamental Research Funds for the Central Universities(2662017PY058,2662017QD044)UK-China grant BBSRC(grant no.BB/R02118X/1)the National Institute of Food and Agriculture,U.S.Department of Agriculture,Hatch project(ALA014-1-16016).
文摘Since whole-genome sequencing of many crops has been achieved,crop functional genomics studies have stepped into the big-data and high-throughput era.However,acquisition of large-scale phenotypic data has become one of the major bottlenecks hindering crop breeding and functional genomics studies.Nevertheless,recent technological advances provide us potential solutions to relieve this bottleneck and to explore advanced methods for large-scale phenotyping data acquisition and processing in the coming years.In this article,we review the major progress on high-throughput phenotyping in controlled environments and field conditions as well as its use for post-harvest yield and quality assessment in the past decades.We then discuss the latest multi-omics research combining high-throughput phenotyping with genetic studies.Finally,we propose some conceptual challenges and provide our perspectives on how to bridge the phenotype-genotype gap.It is no doubt that accurate high-throughput phenotyping will accelerate plant genetic improvements and promote the next green revolution in crop breeding.
基金supported by China Scholarships for Study Abroad
文摘Phenomics studies a variety of phenotypic plant traits and is the key to understanding genetic functions and environmental effects on plants. With the rapid development of genomics, many plant phenotyping platforms have been developed to study complex traits related to the growth, yield, and adaptation to biotic or abiotic stress, but the ability to acquire high-throughput phenotypic data has become the bottleneck in the study of plant genomics. In recent years, researchers around the world have conducted extensive experiments and research on high-throughput, image-based phenotyping techniques,including visible light imaging, fluorescence imaging,thermal imaging, spectral imaging, stereo imaging, and tomographic imaging. This paper considers imaging technologies developed in recent years for high-throughput phenotyping, reviews applications of these technologies in detecting and measuring plant morphological, physiological, and pathological traits, and compares their advantages and limitations.
文摘Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
文摘Background: Nowadays, emergence of Carbapenemase-Producing Enterobacterales (CPE) throughout the world has become a public health problem, especially in countries with limited resources. In recent years, CPE of type OXA-48 (Ambler class D) have been identified in Dakar. The aim of this study was to evaluate the phenotypic detection of OXA-48 CPE using a temocillin disc (30 μg). Methodology: A retrospective study was carried out at Medical Biology Laboratory of Pasteur Institute in Dakar on Ertapenem-Resistant Enterobacterales (ERE) strains isolated from 2015 to 2017. These strains were then tested with a 30 μg temocillin disc. Any strain resistant to temocillin (inhibition diameter Results: Forty-one ERE isolated during the study period were tested, of which 34 (82.9%) were OXA-48 based on phenotypic detection using temocillin disc and confirmed by PCR (100%). OXA-48 CPE strains detected were composed of Klebsiella pneumoniae (n = 14;41.2%), Enterobacter cloacae (n = 8;23.5%), Escherichia coli (n = 7, 20.5%), Citrobacter freundii (n = 3;8.8%), Cronobacter sakazakii (n = 1;3%) and Morganella morganii (n = 1;3%). Conclusion: Temocillin resistance has a good positive predictive value for detecting OXA-48 CPE by phenotypic method, confirmed by PCR. Temocillin is therefore a good marker for detection of OXA-48 CPE except Hafnia alvei.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
文摘Internode number and length are the foundation to constitute plant height, ear height and the above-ground spatial structure of maize plant. In this study, segregating populations were constructed between EHel with extremely low ear height and B73. Through the SNP-based genotyping and phenotypic characterization, 13 QTL distributed on the chromosomes (Chrs) of Chr1, Chr2, Chr5-Chr8 were detected for four traits of internode no. above ear (INa), average internode length above ear (ILaa), internode no. below ear (INb), and average internode length below ear (ILab). Phenotypic variation explained (PVE) by a single QTL ranged from 6.82% (qILab2-2) to 12.99% (qILaa5). Zm00001d016823 within the physical region of qILaa5, the major QTL for ILaa with the largest PVE was determined as the candidate through the genomic annotation and sequence alignment between EHel and B73. Product of Zm00001d016823 was annotated as a WEB family protein homogenous to At1g75720. qRT-PCR assay showed that Zm00001d016823 highly expressed within the tissue of internode, exhibiting statistically higher expression levels among internodes of IN4 to IN7 in EHel than those in B73 (P Zm00001d016823 might provide novel insight into molecular mechanism beyond phytohormones controlling internode development in maize.
基金supported by the National Key Research and Development Program(grant number:2022YFC2305304).
文摘Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172660)Hebei Province Graduate Student Innovation Project(Grant No.CXZZBS2023001)Baoding Natural Science Foundation(Grant No.H2272P015).
文摘Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.
基金supported by the National Natural Science Foundation of China (No.52036006)。
文摘In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
基金the financial supports from the National Key Research and Development Program of China (No. 2022YFB3707501)the National Natural Science Foundation of China (No. 51701083)+1 种基金the GDAS Project of Science and Technology Development, China (No. 2022GDASZH2022010107)the Guangzhou Basic and Applied Basic Research Foundation, China (No. 202201010686)。
文摘Based on experimental data,machine learning(ML) models for Young's modulus,hardness,and hot-working ability of Ti-based alloys were constructed.In the models,the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples.Then,the Ti-(22±0.5)at.%Nb-(30±0.5)at.%Zr-(4±0.5)at.%Cr(TNZC) alloy with a single body-centered cubic(BCC) phase was screened in an interactive loop.The experimental results exhibited a relatively low Young's modulus of(58±4) GPa,high nanohardness of(3.4±0.2) GPa,high microhardness of HV(520±5),high compressive yield strength of(1220±18) MPa,large plastic strain greater than 30%,and superior dry-and wet-wear resistance.This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties.Moreover,it is indicated that TNZC alloy is an attractive candidate for biomedical applications.
文摘Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.
基金The study was funded by the China National Key Research and Development Program(2022YFC2504503,2023YFC3603104)General Health Science and Technology Program of Zhejiang Province(2024KY1099)+2 种基金the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LHDMD24H150001)National Natural Science Foundation of China(82272180)the Project of Drug Clinical Evaluate Research of Chinese Pharmaceutical Association(CPA-Z06-ZC-2021e004).
文摘Objective:Some patients exhibit septic symptoms following laparoscopic surgery,leading to a poor prognosis.Effective clinical subphenotyping is critical for guiding tailored therapeutic strategies in these cases.By identifying predisposing factors for postoperative sepsis,clinicians can implement targeted interventions,potentially improving outcomes.This study outlines a workflow for the subphenotype methodology in the context of laparoscopic surgery,along with its practical application.Methods:This study utilized data routinely available in clinical case systems,enhancing the applicability of our findings.The data included vital signs,such as respiratory rate,and laboratory measures,such as blood sodium levels.The process of categorizing clinical routine data involved technical complexities.A correlation heatmap was used to visually depict the relationships between variables.Ordering points were used to identify the clustering structure and combined with Consensus K clustering methods to determine the optimal categorization.Results:Our study highlighted the intricacies of identifying clinical subphenotypes following laparoscopic surgery,and could thus serve as a valuable resource for clinicians and researchers seeking to explore disease heterogeneity in clinical settings.By simplifying complex methodologies,we aimed to bridge the gap between technical expertise and clinical application,fostering an environment where professional medical knowledge is effectively utilized in subphenotyping research.Conclusion:This tutorial could primarily serve as a guide for beginners.A variety of clustering approaches were explored,and each step in the process contributed to a comprehensive understanding of clinical subphenotypes.
基金Supported by the Municipal Government and School(Hospital)Joint Funding Programme of Guangzhou(No.2023A03J0174,No.2023A03J0188)the State Key Laboratories’Youth Program of China(No.83000-32030003).
文摘●AIM:To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes.●METHODS:Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited.Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients’medical records.A hierarchical cluster analysis was performed.The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts.●RESULTS:A total of 164 children(299 eyes)were divided into two clusters based on their ocular features.Cluster 1(96 eyes)had a shorter axial length(mean±SD,19.44±1.68 mm),a low prevalence of macular abnormalities(1.04%),and no retinal abnormalities or posterior cataracts.Cluster 2(203 eyes)had a greater axial length(mean±SD,20.42±2.10 mm)and a higher prevalence of macular abnormalities(8.37%),retinal abnormalities(98.52%),and posterior cataracts(4.93%).Compared with the eyes in Cluster 2(57.14%),those in Cluster 1(71.88%)had a 2.2 times higher chance of good best-corrected visual acuity[<0.7 logMAR;OR(95%CI),2.20(1.25–3.81);P=0.006].●CONCLUSION:This retrospective study categorizes congenital cataracts into two distinct clusters,each associated with a different likelihood of visual outcomes.This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit,thereby making strides toward precision medicine in the field of congenital cataracts.