期刊文献+
共找到25,359篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of particle size on property of Ti-6Al-4V alloy prepared by high-velocity compaction 被引量:7
1
作者 闫志巧 陈峰 +1 位作者 蔡一湘 尹健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期361-365,共5页
Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming... Three Ti-6Al-4V alloy powders with median diameters of 103, 66 and 44 pm, respectively, were pressed by high-velocity compaction (HVC) technology and then sintered in vacuum. The effects of particle sizes on forming as well as properties of sintered samples were investigated. The results show that fine powders are more difficult to press than coarse powders and its compact density is lower too. But the sintered density of fine powders is obviously higher than that of coarse powders. Compared with the powders with 103 and 66 ~un in diameter, the green density with 44 ~rn diameter powders is lower, which is 85.1% of theoretical density (TD) at an impact energy of 913 J. After sintering at 1300 ~C for 2,5 h, the sintered density of the compacts with 44 pm diameter powders is the highest, and reaches 98.2% of TD. Moreover, the sintered sample with 44 pan in diameter has the highest hardness and compressive strength, which are HV 354 and 1265 MPa, respectively. 展开更多
关键词 TI6AL4V high-velocity compaction (HVC) green density SINTERING
下载PDF
A novel approach to predict green density by high-velocity compaction based on the materials informatics method 被引量:2
2
作者 Kai-qi Zhang Hai-qing Yin +6 位作者 Xue Jiang Xiu-qin Liu Fei He Zheng-hua Deng Dil Faraz Khan Qing-jun Zheng Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第2期194-201,共8页
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great... High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results. 展开更多
关键词 powder METALLURGY high-velocity compaction green density data mining MULTILAYER PERCEPTRON
下载PDF
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:1
3
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 Subgrade filler particles Deep learning particle Shape analysis Particle library compaction characteristics Discrete element method(DEM)
下载PDF
Ballistic performances of the hourglass lattice sandwich structures under high-velocity fragments
4
作者 He-xiang Wu Jia Qu Lin-zhi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期312-325,共14页
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc... In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances. 展开更多
关键词 Hourglass lattice sandwich structures Ballistic performances high-velocity Finite element analysis
下载PDF
Research on High-Velocity Impact Damage Monitoring Method of CFRP Based on Guided Wave
5
作者 WANG Yang YANG Xiaofei +1 位作者 QIU Lei YUAN Shenfang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期60-69,共10页
Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly cons... Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP. 展开更多
关键词 guided waves structural health monitoring(SHM) carbon fiber reinforced polymer(CFRP) high-velocity impact
下载PDF
Gravel hardness effect on compaction characteristics of gravelly soil
6
作者 SHI Yunfang LI Shengang +1 位作者 JIANG Chen LIU Jinning 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1432-1443,共12页
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he... The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction. 展开更多
关键词 Gravelly soil HARDNESS compaction characteristics Crushing characteristics Particle breakage rate Bailey method
下载PDF
Clogging caused by coupled grain migration and compaction effect during groundwater recharge for unconsolidated sandstone reservoir in groundwater-source heat pump
7
作者 Fujian Yang Jing Luo +3 位作者 Guiling Wang Hejuan Liu Dawei Hu Hui Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2947-2959,共13页
In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in... In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems. 展开更多
关键词 Groundwater-source heat pump CLOGGING Grain migration compaction effect Groundwater recharge Unconsolidated sandstone
下载PDF
Micro-destructive assessment of subgrade compaction quality using ultrasonic pulse velocity
8
作者 Xuefei Wang Xuping Dong +3 位作者 Xiangdong Li Jianmin Zhang Guowei Ma Jiale Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4782-4797,共16页
The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content af... The ultrasonic pulse velocity(UPV)correlates significantly with the density and pore size of subgrade filling materials.This research conducts numerous Proctor and UPV tests to examine how moisture and rock content affect compaction quality.The study measures the changes in UPV across dry density and compaction characteristics.The compacted specimens exhibit distinct microstructures and mechanical properties along the dry and wet sides of the compaction curve,primarily influenced by internal water molecules.The maximum dry density exhibits a positive correlation with the rock content,while the optimal moisture content demonstrates an inverse relationship.As the rock content increases,the relative error of UPV measurement rises.The UPV follows a hump-shaped pattern with the initial moisture content.Three intelligent models are established to forecast dry density.The measure of UPV and PSO-BP-NN model quickly assesses compaction quality. 展开更多
关键词 SUBGRADE compaction quality Ultrasonic pulse velocity(UPV) Intelligent model Proctor test Micro-destructive evaluation
下载PDF
Overview on Soil Compaction and Sugar Beet Growth
9
作者 ZHOU Yanli SUN Qunying +3 位作者 YU Lihua LIU Na LU Bingfu LIU Xiaoxue 《中国糖料》 2024年第4期68-77,共10页
With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorat... With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets. 展开更多
关键词 sugar beet CROP agricultural mechanization soil compaction
下载PDF
Urban Soil Compaction Remediation by Shallow Tillage and Compost in Hydroseeded Lawn
10
作者 James Jihoon Kang Adam Flores +1 位作者 Engil Isadora Pujol Pereira Jungseok Ho 《Open Journal of Soil Science》 2024年第7期399-415,共17页
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm... Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites. 展开更多
关键词 compaction COMPOST INFILTRATION Soil Organic Matter Soil Enzyme TILLAGE Wet Aggregate Stability
下载PDF
VITEK■ 2 Compact全自动微生物鉴定药敏分析仪虚拟仿真教学软件的开发与应用
11
作者 黄荔丰 《工业微生物》 CAS 2024年第3期31-34,共4页
文章主要介绍了VITEK■2 Compact全自动微生物鉴定药敏分析仪虚拟仿真教学软件的设计与开发,以及虚拟仿真融合线上线下混合教学模式在医学微生物检验实验教学中的应用。结果表明,该仿真教学软件的实际应用既有利于培养学生的实践操作能... 文章主要介绍了VITEK■2 Compact全自动微生物鉴定药敏分析仪虚拟仿真教学软件的设计与开发,以及虚拟仿真融合线上线下混合教学模式在医学微生物检验实验教学中的应用。结果表明,该仿真教学软件的实际应用既有利于培养学生的实践操作能力及思维方式,又能弥补学校实训环境与临床实际不符的缺陷,为微生物检验实验教学质量的提升开辟新的思路。 展开更多
关键词 VITEK■2 compact 虚拟仿真 微生物学检验 实验教学
下载PDF
Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al_(2)O_(3) composite coatings using satellited powders 被引量:2
12
作者 Pejman Zamani Zia Valefi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1779-1791,共13页
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida... Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure. 展开更多
关键词 MCrAlY coating CoNiCrAlY-Al_(2)O_(3)composite satellited feedstock MICROSTRUCTURE high-temperature oxidation high-velocity oxy-fuel spraying
下载PDF
Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models 被引量:2
13
作者 Jitendra Khatti Kamaldeep Singh Grover 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期3010-3038,共29页
A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from t... A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters. 展开更多
关键词 Artificial intelligence(AI) Anderson-darling(AD)test compaction parameters Fine-grained soil Soft computing Score analysis
下载PDF
Rapid testing and prediction of soil–water characteristic curve of subgrade soils considering stress state and degree of compaction 被引量:2
14
作者 Junhui Peng Huiren Hu Junhui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3305-3315,共11页
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve... The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC. 展开更多
关键词 Subgrade soil Soil–water characteristic curve(SWCC) Overburden stress Degree of compaction Prediction mode
下载PDF
Driver at 10 MJ and 1 shot/30 min for inertial confinement fusion at high gain:Efficient,compact,low-cost,low laser-plasma instabilities,beam color selectable from 2ω/3ω/4ω,applicable to multiple laser fusion schemes 被引量:1
15
作者 隋展 蓝可 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期4-7,共4页
The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve ... The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities. 展开更多
关键词 applicable compact INSTABILITIES
下载PDF
Influence of relative compaction and degree of saturation on the deformation characteristics of bentonite under freeze-thaw cycles
16
作者 Hao Wang Xu Li +2 位作者 WenShao Xin Vladimir Nikolaevich Paramonov XueWen Zhao 《Research in Cold and Arid Regions》 CSCD 2023年第4期161-170,共10页
Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as... Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as a filling material in cold regions since bentonite is highly sensitive to thermal environmental changes,during which its bulk volume and microstructure change significantly.In this study,a series of one-dimensional and three-dimensional freeze-thaw tests were carried out within a closed system to investigate the influencing factors of the deformation of bentonite under freeze-thaw cycles.Results show that the initial soil water content greatly impacts bentonite's deformation during freeze-thaw cycles.For an initial higher degree of saturation(Sr),the expansion caused by the formation of ice lenses has a greater impact than the shrinkage induced by dehydration,ice-cementation,and so on.Conversely,bentonite tends to shrink at a lower degree of saturation during freezing.And the critical degree of saturation that determines bentonite's behavior of frost heave or frost shrinkage seems to be roughly 0.8.As the number of freeze-thaw cycles rises,initially uncompacted bentonite clay becomes more compacted,and initially compacted bentonite clay remains unchanged. 展开更多
关键词 BENTONITE Relative compaction Degree of saturation Freeze-thaw cycles DEFORMATION
下载PDF
A Revisit to the Swedish Wet Compaction Method—A Case Study of the Burvattnet Dam Reconstruction
17
作者 Hans Rönnqvist Tina Påhlstorp Daniel Gustavsson 《Open Journal of Civil Engineering》 2023年第2期282-291,共10页
The Swedish Wet compaction method allows soil compaction at higher water content than conventional Dry compaction methods and can be used to advantage when difficulties arise in keeping to a certain Dry compaction wat... The Swedish Wet compaction method allows soil compaction at higher water content than conventional Dry compaction methods and can be used to advantage when difficulties arise in keeping to a certain Dry compaction water content. Wet compaction was frequently applied for dam core soils of glacial till (moraine) up until late 1970s, and despite several advantages it is since no longer used in engineering practice. During the reconstruction of Burvattnet Main Dam in Sweden, the lack of dry core soil together with severe weather conditions made Dry compaction almost impossible. On the basis of laboratory compaction tests performed in compliance with the standard from the 1950s, and field compaction trials on site, this paper describes the steps taken to revisit the Wet compaction method, which made it possible to continue the filling works in keeping with the timeline of the project. 展开更多
关键词 Soil compaction Wet compaction Laboratory Field Trial Glacial Till
下载PDF
Densification of Reclaimed Soils with the Utilization of the Vibro Compaction Technique—A Case Study
18
作者 Emmanouil Spyropoulos Bedros Avakian 《Open Journal of Civil Engineering》 2023年第2期263-281,共19页
This paper presents a case study of the extensive soil improvement work carried out on a reclamation project on the shores of United Arab Emirates. The project consisted an area of approximately 480,000 m<sup>2&... This paper presents a case study of the extensive soil improvement work carried out on a reclamation project on the shores of United Arab Emirates. The project consisted an area of approximately 480,000 m<sup>2</sup> for recreation purposes. Following the dredging work, approximately 6.8 million cubic meters underwent densification using the vibrocompaction method. The general aims of such analysis are to investigate the effectiveness of vibrocompaction as a method of soil improvement and appraise the selection of this method as the most appropriate soil treatment technique necessary for the adequate densification of the overall loose soil masses. The efficiency of the vibrocompaction technique to densify thick granular-based soil formations of considerable thickness and the benefits obtained, equated to other soil treatment methods, was assessed through a comprehensive post quality control program including field and laboratory post-compaction testing. Based on the analysis conducted it is concluded that soil strength of the reclaimed materials achieved a noteworthy improvement reaching comfortably the required degrees of densification. 展开更多
关键词 RECLAMATION DREDGING Manmade Islands compaction Soil Improvement
下载PDF
Conceptual design of a 714-MHz RFQ for compact proton injectors and development of a new tuning algorithm on its aluminium prototype
19
作者 Yi-Xing Lu Wen-Cheng Fang +1 位作者 Yu-Sen Guo Zhen-Tang Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期45-58,共14页
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro... Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step. 展开更多
关键词 compact proton injector RFQ IH-DTL High gradient Tuning
下载PDF
Study on the impact force and green properties of high-velocity compacted aluminum alloy powder
20
作者 Xian-jie Yuan Hai-qing Yin +2 位作者 Rafi-ud Din Dil-faraz Khan Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第12期1107-1113,共7页
High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green de... High-velocity compaction (HVC) provides an effective means in the field of powder metallurgy (P/M) to reduce the porosity as well as to ameliorate the mechanical properties of products. In this study, the green density of an aluminum alloy is found to be 2.783 g cm 3. The ejection force for the aluminum alloy is in the range of 23 to 80 kN and the spring back is found to be less than 0.40%. The hardness of the green body is in the range of HRB 30 to 70. The bending strength of the green body is in the range of 6 to 26 MPa, which are higher than that of other aluminum alloys prepared by the traditional compaction method. 展开更多
关键词 aluminum alloys POWDERS powder metallurgy compaction impact mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部