Jujube wine is a health drink with local characteristics and is worth pro- moting. Jujube wine fermentation can be divided into alcoholic fermentation and mal- olactic fermentation. Yeast is the key of alcoholic ferme...Jujube wine is a health drink with local characteristics and is worth pro- moting. Jujube wine fermentation can be divided into alcoholic fermentation and mal- olactic fermentation. Yeast is the key of alcoholic fermentation while lactic acid bac- teria is the key of malolactic fermentation, and therefore the breeding of yeast and lactic acid bacteria is crucial for the quality of jujube wine. Besides, the control of methanol is a major problem in production, and the control of higher alcohol is also difficult. Thus, we summarized the research related with the breeding of yeast and lactic acid bacteria, and the control of methanol and higher alcohols, and proposed that breeding specialized yeast and lactic acid bacteria was the future research di- rection. Moreover, the production mechanism of methanol and higher alcohols was investigated, and the content of methanol and higher alcohols was effectively con- trolled on the basis of quality guarantee, providing references for the production technology of jujube wine.展开更多
A series of surfactant-modified CuCoMn-based catalysts were prepared for higher alco- hol synthesis from biomass-based syngas. Three typical surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate...A series of surfactant-modified CuCoMn-based catalysts were prepared for higher alco- hol synthesis from biomass-based syngas. Three typical surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and pluronic P123 triblock copolymer (EO20PO70EO20), were employed. Compared to surfactant-free CuCoMn catalyst, CO conversion increased from 17.4% to 29.7% over SDS-modified CuCoMn catalyst, and the selectivity of higher alcohols increased from 22.0% to 41.2% over CTAB-modified catalyst. Besides, the proportions of higher alcohols in total alcohols increased over all surfactantmodified catalysts. The catalysts were characterized by N2 adsorption/desorption, XRD, XPS and IR analysis. The results showed that several more favorable features rendered the CTAB-modified CuCoMn catalyst to be suitable for higher alcohol production, such as the larger pore size, better crystallinity of CuCoMnO4 spinel. moderate surface atomic distribution and lower valence of metallic ions. In addition, it was verified that CTAB addition at the metal precipitation stage was beneficial to higher alcohol synthesis. Surfactant-induced modification provides a promising alternative method for catalyst improvement in synthesis of higher alcohols.展开更多
Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product...Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon.展开更多
A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structures were characterized by X-ray diffraction, N2 adsorption-d...A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structures were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy and H2-TPD, and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated. The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs. The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products, thus promoting the reaction conversion. Furthermore, the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group, which served as the key intermediate for the alcohol formation and carbon chain growth. Benefiting from these characteristics, the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.展开更多
Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-...Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.展开更多
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatme...Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.展开更多
Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared...Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method, it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol, the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.展开更多
Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption.However,the reaction always suffers from low yield...Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption.However,the reaction always suffers from low yield as well as low selectivity.Herein,effective increase of higher alcohols proportion in the product is realized by direct conversion of syngas over electronically-modulated ZnO semiconductor via Cu doping.It is considered that the lower Fermi level and narrower band gap of catalysts by embedding Cu^(2+)into ZnO lattice could facilitate donor reaction by boosting the process for the reactants to obtain electrons on the catalyst surface for the formation of CH_(x) species and carbon chain growth,in which the Cu doping on ZnO lattice play important role in the promotion of CO adsorption.As a result,4 mol%Cu doped ZnO exhibits a highest C_(2+) OH/ROH fraction of 48.1%.Selectivity of catalysts from straight chain alcohol is better than from branch chain alcohol,which is different from promoted Cu/ZnO based catalyst.However,over-doping of Cu(7 mol%)on ZnO results in the aggregation Cu species on ZnO surface,leading to a sharp decrease of higher alcohols proportion to 3.2%.The results shed light on the nature that a direct correlation between semiconductor Fermi level and synthesis of higher alcohols,and the semiconductor-based catalysts mainly accelerate the hydrogenation reactions by enhancing thermally excited electron transfer.展开更多
Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to...Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.展开更多
In this paper, the molybdenum phosphide(MoP) catalysts(TPR-MoP and TPR-MoP-Pla) were prepared by the traditional method and the RF(radio frequency) thermal plasma technique respectively and characterized by x-ray diff...In this paper, the molybdenum phosphide(MoP) catalysts(TPR-MoP and TPR-MoP-Pla) were prepared by the traditional method and the RF(radio frequency) thermal plasma technique respectively and characterized by x-ray diffraction(XRD), x-ray photoelectron spectroscopy(XPS), transmission electron microscope(TEM), hydrogen temperature-programmed desorption(H_2-TPD) and carbon monoxide temperature-programmed desorption(CO-TPD) measurements,and their catalytic performance for HAS was evaluated. The results showed that the total and C_(2+) alcohols selectivity of the catalyst after plasma treatment(TPR-MoP-Pla) were enhanced.The enhanced catalytic performance could be related to more dislocation defects and the synergistic effect between Mo^(0–2+) and Mo^(4+) valence species in the TPR-MoP-Pla catalyst. In addition, this work suggests that thermal plasma treatment can be used as a new preparation technique for the synthesis of materials with rich species.展开更多
The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no ...The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.展开更多
Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was establish...Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was established to analyze the metabolism pattern of higher alcohols in rat plasma after gavage of 4 common alcoholic beverages including huangjiu, baijiu, wine and brandy. 7 mL of dichloromethane was determined as the optimal extraction condition, and 8 higher alcohols were precisely quantified with detection limits of 1.82-11.65 μg/L, recoveries of 89.07%-110.89% and fine repeatability. The fastest absorption and elimination rates of plasma total higher alcohols were observed in baijiu and huangjiu group, respectively, and the highest peak concentration was found in brandy group. Additionally, the metabolic rate of plasma isoamyl alcohol in huangjiu group was faster than that in wine group at the same intragastric administration dosage. This study may provide potential insight for evaluation of alcoholic beverage quality.展开更多
Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivi...Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivity still needs to be improved and the crystal structure effect of Co^(0)on catalytic behaviors lacks investigation.Here,a series of tetrahedrally coordinated Co^(0)polymorphs were prepared by a thermal decomposition method,which consisted of wurtzite CoO and zinc blende CoO with varied contents.After diluting with SiO_(2),the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8%and higher alcohol distribution of 84.1 wt%under the CO conversion of 38.0%.With increasing the content of wurtzite CoO,the Co^(0)/Co^(2+)ratio gradually increased in the spent catalysts,while the proportion of highly active hexagonal close packed cobalt in Co^(0)decreased,leading to first decreased then increased CO conversion.Moreover,the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co^(2+)sites in spent catalysts,promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols.The catalyst with 40%wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat^(-1)·h^(-1).展开更多
Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selec...Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selectivity,space–time yield(STY),and stability.Herein,we designed a diatomic catalyst by anchoring Co and Cu sites onto a hierarchical porous N-doped carbon matrix(Co/Cu–N–C).The Co/Cu–N–C is efficient for HAS and is among the best catalysts reported.With a COconversion of 81.7%,C2+OHselectivity could reach 58.5%with an outstanding C2+OH STY of 851.8 mg/g·h.We found that the N4–Co1 and Cu1–N4 showed an excellent synergistic effect.The adsorption of CO occurred on the Co site,and the surrounding nitrogen sites served as a hydrogen reservoir for the CO reduction reactions to form CHxCo.Meanwhile,the Cu sites stabilized a CHOCu species to interact with CHxCo,facilitating a barrier-free formation of C2 species,which is responsible for the high selectivity of higher alcohols.展开更多
The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain...The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain C_1–C_6mixed alcohols production over cobalt–copper based catalysts. A number of catalyst formulations were screened for their suitability at that time. In particular, the addition of Cr, Zn, Al, Mn and V to Co Cu was investigated. In a number of patents, it was shown that catalyst preparation is crucial in these catalyst formulations and that high alcohols selectivity can only be achieved by carefully respecting the procedures and recipes. This short critical review highlights recent developments in Co Cu-based catalysts for higher terminal alcohols synthesis via F–T synthesis. Special attention will be given to catalyst preparation which according to developments in our group is based on oxalate precipitation. This way we show that the close association of Co and Cu on the one hand and promoter/dispersant on the other are of utmost importance to ensure high performance of the catalysts. We shall concentrate on 'Co Cu Mn','Co Cu Mo' and 'Co Cu Nb' catalyst formulations, all prepared via oxalate precipitation and combined with'entrainment techniques' if necessary, and show high total alcohols selectivity can be obtained with tunable Anderson-Schulz-Flory chain-lengthening probability. Either long-chain C_8–C_(14)terminal alcohols as feedstock for plasticizers, lubricants and detergents, or short-chain C_2–C_5alcohols as 'alkanol' fuels or fuel additives can be formed this way.展开更多
HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in...HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in this work were characterized by N 2 adsorption-desorption, TEM, XRD, H 2 -TPR, CO-TPD techniques. It was found that the pre-treatment procedure of CNTs remarkably promoted the catalytic properties of the Cu-Co/CNTs catalysts. For the Cu-Co catalyst supported on CNTs pre-treated by 68 wt% HNO 3 , some active components were introduced into the CNTs channels, their dispersions and the amount of strongly adsorbed CO-species were improved. The CO conversion and alcohol yield on the HNO 3 -pretreated Cu-Co/CNTs catalyst were increased by ~21% and ~69%, respectively, compared with those on the normal Cu-Co/CNTs catalyst.展开更多
Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporo...Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporous silica(OMS) composites for higher alcohol synthesis(HAS).The carbon layers were derived from different sources and uniformly coated on the porous surface of OMS.Combined with the characterization results of carbonized catalysts,it is demonstrated that the carbon layer-coated supports significantly enhanced the metal dispersion and increased the ratio of Co2+ to Co0 sites,which further increased the CO conversion and alcohols selectivity.Moreover,it is found that the catalytic activity changed in line with the amount of defects and surface oxygenic groups of carbon layers,which re sulted from the different carbon sources.The highest space time yield of C2+OH was 27.5 mmol gcat-1h-1)obtained by the catalyst coated with glucose-derived carbon layer.But the carbon source is not the key factor influencing the distribution of Co-Co2+ dual sites and shows little effect on selectivity in HAS.These results may guide for further design of carbon supported catalysts.展开更多
High alcohols are important flavor compounds in alcoholic beverages,but high concentration of high alcohols is harmful to human health.Higher alcohol synthesis pathways in brewing microorganisms have been investigated...High alcohols are important flavor compounds in alcoholic beverages,but high concentration of high alcohols is harmful to human health.Higher alcohol synthesis pathways in brewing microorganisms have been investigated,but the interactions between key genes remain to be explored,especially in industrial strains of Saccharomyces cerevisiae.The PDC1 gene was considered to be the main encoding gene ofα-keto acid decarboxylase,and its deletion resulted in a 92.23%increase in isobutanol production and a 14.89%decrease in isoamyl alcohol production.Transcriptome sequencing was used to explore the effects of PDC1 gene deletion on global gene transcription levels,and deletion strategies were utilized to verify the effects of differential genes on higher alcohol production.Deletion of differential gene HMLALPHA2 increased isobutanol production by 26.23%,and decreased isoamyl alcohol and 2-phenylethanol production by 30.31%and 22.35%,respectively.The THI2,THI4,THI20 genes were proved to be related to n-propanol synthesis.In addition,HMRA2 and SIR3 genes were found to influence isoamyl alcohol synthesis pathways,and their deletion increased isoamyl alcohol production by 25.18%and 21.76%.Our discovery of new target genes is useful for elucidating the molecular mechanisms of higher alcohols and the construction of novel low-producing higher alcohol strains.展开更多
Cu/ZrO 2 and MoS 2 based catalysts were developed for the synthesis of higher alcohols. Modified by the carbon chain growth enhancing elements, both catalyst systems showed the high performance without the obvious dea...Cu/ZrO 2 and MoS 2 based catalysts were developed for the synthesis of higher alcohols. Modified by the carbon chain growth enhancing elements, both catalyst systems showed the high performance without the obvious deactivation after 2000 h running at 9.0~12.0 MPa and 300~380 ℃, indicating a good prospect for the further development in practical application.展开更多
基金Supported by the"Program for the Study on the Processing and Utilization of Regional Feature Fruits in Shanxi(2017)",the Shanxi Finance Department(2017zzcx-01)the Program for the Evaluation of Jujube Varieties and the Processed Goods Nutritional Value,and the Development of Processing Techniques,a subproject of the"Development of Key Technologies for the Commercialization of Red Jujube",the Shanxi Science and Technology Department(2015-TN-4-7)~~
文摘Jujube wine is a health drink with local characteristics and is worth pro- moting. Jujube wine fermentation can be divided into alcoholic fermentation and mal- olactic fermentation. Yeast is the key of alcoholic fermentation while lactic acid bac- teria is the key of malolactic fermentation, and therefore the breeding of yeast and lactic acid bacteria is crucial for the quality of jujube wine. Besides, the control of methanol is a major problem in production, and the control of higher alcohol is also difficult. Thus, we summarized the research related with the breeding of yeast and lactic acid bacteria, and the control of methanol and higher alcohols, and proposed that breeding specialized yeast and lactic acid bacteria was the future research di- rection. Moreover, the production mechanism of methanol and higher alcohols was investigated, and the content of methanol and higher alcohols was effectively con- trolled on the basis of quality guarantee, providing references for the production technology of jujube wine.
基金V. ACKNOWLEDGMENTS This work was supported by the National Key Basic Program of China (No.2013CB228105), and the National Natural Science Foundation of China (No.51161140331). The assistance of Song-bai Qiu and Tong-qi Ye from University of Science and Technology of China is gratefully acknowledged.
文摘A series of surfactant-modified CuCoMn-based catalysts were prepared for higher alco- hol synthesis from biomass-based syngas. Three typical surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and pluronic P123 triblock copolymer (EO20PO70EO20), were employed. Compared to surfactant-free CuCoMn catalyst, CO conversion increased from 17.4% to 29.7% over SDS-modified CuCoMn catalyst, and the selectivity of higher alcohols increased from 22.0% to 41.2% over CTAB-modified catalyst. Besides, the proportions of higher alcohols in total alcohols increased over all surfactantmodified catalysts. The catalysts were characterized by N2 adsorption/desorption, XRD, XPS and IR analysis. The results showed that several more favorable features rendered the CTAB-modified CuCoMn catalyst to be suitable for higher alcohol production, such as the larger pore size, better crystallinity of CuCoMnO4 spinel. moderate surface atomic distribution and lower valence of metallic ions. In addition, it was verified that CTAB addition at the metal precipitation stage was beneficial to higher alcohol synthesis. Surfactant-induced modification provides a promising alternative method for catalyst improvement in synthesis of higher alcohols.
基金the State Key Fundamental Research Program(Ministry of Science and Technology of China,No.2011CBA00501)Shanghai Municipal Science and Technology Commission,China(Grant No:11DZ1200300)the Foundation of State Key Laboratory of Coal Conversion(Grant No:1112610)
文摘Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon.
基金This work was supported by National Natural Science Foundation of China (No.21673214).
文摘A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structures were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy and H2-TPD, and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated. The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs. The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products, thus promoting the reaction conversion. Furthermore, the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group, which served as the key intermediate for the alcohol formation and carbon chain growth. Benefiting from these characteristics, the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.
文摘Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.
基金supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Ph.D.Programs Foundation of Liaocheng University(No.31805)the NSF of China(21263011,21376170)
文摘Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.
基金Natural Science Foundation of State Key Laboratory of Coal Conversion(No09-610)
文摘Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method, it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol, the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.
基金support by the National Natural Science Foundation of China(21975173 and 21776195)the fund for Shanxi“1331 project”and Major Projects of Shanxi Province(201803D121043).
文摘Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption.However,the reaction always suffers from low yield as well as low selectivity.Herein,effective increase of higher alcohols proportion in the product is realized by direct conversion of syngas over electronically-modulated ZnO semiconductor via Cu doping.It is considered that the lower Fermi level and narrower band gap of catalysts by embedding Cu^(2+)into ZnO lattice could facilitate donor reaction by boosting the process for the reactants to obtain electrons on the catalyst surface for the formation of CH_(x) species and carbon chain growth,in which the Cu doping on ZnO lattice play important role in the promotion of CO adsorption.As a result,4 mol%Cu doped ZnO exhibits a highest C_(2+) OH/ROH fraction of 48.1%.Selectivity of catalysts from straight chain alcohol is better than from branch chain alcohol,which is different from promoted Cu/ZnO based catalyst.However,over-doping of Cu(7 mol%)on ZnO results in the aggregation Cu species on ZnO surface,leading to a sharp decrease of higher alcohols proportion to 3.2%.The results shed light on the nature that a direct correlation between semiconductor Fermi level and synthesis of higher alcohols,and the semiconductor-based catalysts mainly accelerate the hydrogenation reactions by enhancing thermally excited electron transfer.
基金funded by the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF,Verbundvorhaben Carbon2Chem■,FKZ:03EK3041)
文摘Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.
基金the National Natural Science Foundation of China (No. 21476118)Major Projects of Inner Mongolia Natural Science Foundation (2019ZD01)+2 种基金Inner Mongolia Science & Technology Plan (Nos. 30500515330303)Inner Mongolia Major Science and Technology Project (No. 21300-5193901)Prairie Excellence Innovation and Entrepreneurial Team of Inner Mongolia (No. 12000-12102413)。
文摘In this paper, the molybdenum phosphide(MoP) catalysts(TPR-MoP and TPR-MoP-Pla) were prepared by the traditional method and the RF(radio frequency) thermal plasma technique respectively and characterized by x-ray diffraction(XRD), x-ray photoelectron spectroscopy(XPS), transmission electron microscope(TEM), hydrogen temperature-programmed desorption(H_2-TPD) and carbon monoxide temperature-programmed desorption(CO-TPD) measurements,and their catalytic performance for HAS was evaluated. The results showed that the total and C_(2+) alcohols selectivity of the catalyst after plasma treatment(TPR-MoP-Pla) were enhanced.The enhanced catalytic performance could be related to more dislocation defects and the synergistic effect between Mo^(0–2+) and Mo^(4+) valence species in the TPR-MoP-Pla catalyst. In addition, this work suggests that thermal plasma treatment can be used as a new preparation technique for the synthesis of materials with rich species.
基金supported by the National Natural Science Foundation of China(21673214,U1732272)
文摘The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.
基金supported by the National Natural Science Foundation of China(22138004 and 32001828).
文摘Higher alcohols are key factors affecting sensory quality and post-drinking comfort of alcoholic beverages. A strategy combining solid-phase extraction and gas chromatography-mass spectrometry(SPE-GC-MS) was established to analyze the metabolism pattern of higher alcohols in rat plasma after gavage of 4 common alcoholic beverages including huangjiu, baijiu, wine and brandy. 7 mL of dichloromethane was determined as the optimal extraction condition, and 8 higher alcohols were precisely quantified with detection limits of 1.82-11.65 μg/L, recoveries of 89.07%-110.89% and fine repeatability. The fastest absorption and elimination rates of plasma total higher alcohols were observed in baijiu and huangjiu group, respectively, and the highest peak concentration was found in brandy group. Additionally, the metabolic rate of plasma isoamyl alcohol in huangjiu group was faster than that in wine group at the same intragastric administration dosage. This study may provide potential insight for evaluation of alcoholic beverage quality.
基金support from the National Natural Science Foundation of China(Grant Nos.22108199,22278317,and 22022811)the China Postdoctoral Science Foundation(Grant No.2021TQ0239)。
文摘Higher alcohol synthesis directly from syngas is highly desirable as one of the efficient non-petroleum energy conversion routes.Co^(0)–CoO catalysts showed great potential for this reaction,but the alcohol selectivity still needs to be improved and the crystal structure effect of Co^(0)on catalytic behaviors lacks investigation.Here,a series of tetrahedrally coordinated Co^(0)polymorphs were prepared by a thermal decomposition method,which consisted of wurtzite CoO and zinc blende CoO with varied contents.After diluting with SiO_(2),the catalyst showed excellent performance for higher alcohol synthesis with ROH selectivity of 45.8%and higher alcohol distribution of 84.1 wt%under the CO conversion of 38.0%.With increasing the content of wurtzite CoO,the Co^(0)/Co^(2+)ratio gradually increased in the spent catalysts,while the proportion of highly active hexagonal close packed cobalt in Co^(0)decreased,leading to first decreased then increased CO conversion.Moreover,the higher content of zinc blende CoO in fresh catalyst facilitated the retention of more Co^(2+)sites in spent catalysts,promoting the ROH selectivity but slightly decreasing the distribution of higher alcohols.The catalyst with 40%wurtzite CoO obtained the optimal performance with a space time yield toward higher alcohols of 7.9 mmol·gcat^(-1)·h^(-1).
基金the National Key Research and Development Program of China(grant nos.2019YFB1503903,2019YFB1503904,and 2018YFB1501403)The Natural Science Foundation of Fujian Province of China(grant no.2019J06005).
文摘Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selectivity,space–time yield(STY),and stability.Herein,we designed a diatomic catalyst by anchoring Co and Cu sites onto a hierarchical porous N-doped carbon matrix(Co/Cu–N–C).The Co/Cu–N–C is efficient for HAS and is among the best catalysts reported.With a COconversion of 81.7%,C2+OHselectivity could reach 58.5%with an outstanding C2+OH STY of 851.8 mg/g·h.We found that the N4–Co1 and Cu1–N4 showed an excellent synergistic effect.The adsorption of CO occurred on the Co site,and the surrounding nitrogen sites served as a hydrogen reservoir for the CO reduction reactions to form CHxCo.Meanwhile,the Cu sites stabilized a CHOCu species to interact with CHxCo,facilitating a barrier-free formation of C2 species,which is responsible for the high selectivity of higher alcohols.
基金supported by the National Science Foundation under contract No.CBET-1438227
文摘The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain C_1–C_6mixed alcohols production over cobalt–copper based catalysts. A number of catalyst formulations were screened for their suitability at that time. In particular, the addition of Cr, Zn, Al, Mn and V to Co Cu was investigated. In a number of patents, it was shown that catalyst preparation is crucial in these catalyst formulations and that high alcohols selectivity can only be achieved by carefully respecting the procedures and recipes. This short critical review highlights recent developments in Co Cu-based catalysts for higher terminal alcohols synthesis via F–T synthesis. Special attention will be given to catalyst preparation which according to developments in our group is based on oxalate precipitation. This way we show that the close association of Co and Cu on the one hand and promoter/dispersant on the other are of utmost importance to ensure high performance of the catalysts. We shall concentrate on 'Co Cu Mn','Co Cu Mo' and 'Co Cu Nb' catalyst formulations, all prepared via oxalate precipitation and combined with'entrainment techniques' if necessary, and show high total alcohols selectivity can be obtained with tunable Anderson-Schulz-Flory chain-lengthening probability. Either long-chain C_8–C_(14)terminal alcohols as feedstock for plasticizers, lubricants and detergents, or short-chain C_2–C_5alcohols as 'alkanol' fuels or fuel additives can be formed this way.
基金supported by the Foundation of Shaanxi Educational Committee (2010JK608)the Research Foundation of XATU (204-000092)supported by the National Natural Science Foundation of China (205903603)
文摘HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in this work were characterized by N 2 adsorption-desorption, TEM, XRD, H 2 -TPR, CO-TPD techniques. It was found that the pre-treatment procedure of CNTs remarkably promoted the catalytic properties of the Cu-Co/CNTs catalysts. For the Cu-Co catalyst supported on CNTs pre-treated by 68 wt% HNO 3 , some active components were introduced into the CNTs channels, their dispersions and the amount of strongly adsorbed CO-species were improved. The CO conversion and alcohol yield on the HNO 3 -pretreated Cu-Co/CNTs catalyst were increased by ~21% and ~69%, respectively, compared with those on the normal Cu-Co/CNTs catalyst.
基金support from the National Natural Science Foundation of China(Nos.U1462204,21706184)the National Postdoctoral Program for Innovative Talents of China(No.BX20180221)。
文摘Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporous silica(OMS) composites for higher alcohol synthesis(HAS).The carbon layers were derived from different sources and uniformly coated on the porous surface of OMS.Combined with the characterization results of carbonized catalysts,it is demonstrated that the carbon layer-coated supports significantly enhanced the metal dispersion and increased the ratio of Co2+ to Co0 sites,which further increased the CO conversion and alcohols selectivity.Moreover,it is found that the catalytic activity changed in line with the amount of defects and surface oxygenic groups of carbon layers,which re sulted from the different carbon sources.The highest space time yield of C2+OH was 27.5 mmol gcat-1h-1)obtained by the catalyst coated with glucose-derived carbon layer.But the carbon source is not the key factor influencing the distribution of Co-Co2+ dual sites and shows little effect on selectivity in HAS.These results may guide for further design of carbon supported catalysts.
基金Supported by Tianjin Science and Technology Project(22ZYJDSS00050)Project Program of Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,and Tianjin Key Laboratory of Industrial Microbiology,China(No.2020KF002)+2 种基金National Natural Science Foundation of China(31771969)Liquor Making Biological Technology and Application of key laboratory of Sichuan Province(NJ2020-02)Project Program of Tianjin Graduate Research and Innovation(No.2020YJSB124).
文摘High alcohols are important flavor compounds in alcoholic beverages,but high concentration of high alcohols is harmful to human health.Higher alcohol synthesis pathways in brewing microorganisms have been investigated,but the interactions between key genes remain to be explored,especially in industrial strains of Saccharomyces cerevisiae.The PDC1 gene was considered to be the main encoding gene ofα-keto acid decarboxylase,and its deletion resulted in a 92.23%increase in isobutanol production and a 14.89%decrease in isoamyl alcohol production.Transcriptome sequencing was used to explore the effects of PDC1 gene deletion on global gene transcription levels,and deletion strategies were utilized to verify the effects of differential genes on higher alcohol production.Deletion of differential gene HMLALPHA2 increased isobutanol production by 26.23%,and decreased isoamyl alcohol and 2-phenylethanol production by 30.31%and 22.35%,respectively.The THI2,THI4,THI20 genes were proved to be related to n-propanol synthesis.In addition,HMRA2 and SIR3 genes were found to influence isoamyl alcohol synthesis pathways,and their deletion increased isoamyl alcohol production by 25.18%and 21.76%.Our discovery of new target genes is useful for elucidating the molecular mechanisms of higher alcohols and the construction of novel low-producing higher alcohol strains.
文摘Cu/ZrO 2 and MoS 2 based catalysts were developed for the synthesis of higher alcohols. Modified by the carbon chain growth enhancing elements, both catalyst systems showed the high performance without the obvious deactivation after 2000 h running at 9.0~12.0 MPa and 300~380 ℃, indicating a good prospect for the further development in practical application.