Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared...Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method, it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol, the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.展开更多
改性费托合成催化剂(尤其是CuCo催化剂)在合成气制乙醇及高级醇反应中具有高的催化活性和总醇选择性,被认为是潜在的工业催化剂。采用蒸发诱导自组装(EISA)法和共沉淀(CP)法制备了一系列CuCoZr催化剂,考察了制备方法及EISA法制备的催化...改性费托合成催化剂(尤其是CuCo催化剂)在合成气制乙醇及高级醇反应中具有高的催化活性和总醇选择性,被认为是潜在的工业催化剂。采用蒸发诱导自组装(EISA)法和共沉淀(CP)法制备了一系列CuCoZr催化剂,考察了制备方法及EISA法制备的催化剂Cu/Co原子比对合成气制乙醇及高级醇性能的影响。采用N物理吸附-脱附、小角X射线衍射(XRD)、原位XRD、透射电镜(TEM)、H_(2)-程序升温还原(TPR)、CO-程序升温脱附(TPD)和原位红外漫反射光谱(DRIFT)对催化剂进行表征,分析了合成气在Cu/Co原子比为3∶1的Cu_(3)Co_(1)Zr催化剂表面的反应路径。结果表明,EISA法制备的Cu Co Zr催化剂为有序介孔结构,比表面积随Cu/Co原子比的增加先增大后减小,其中Cu_(3)Co_(1)Zr催化剂比表面积和CO吸附量均为最大,分别为143m^(2)/g和0.33mmol/g,催化剂的Cu晶粒尺寸仅为9.1nm。在催化合成气制醇的反应中CO转化率达到74.9%,总醇中的高级醇时空收率达到75.2mg/(g_(cat)·h),乙醇物质的量分数为31.0%,明显优于共沉淀法制备的组成相同的CuCoZr-CP催化剂。展开更多
This paper reports an experimental study on catalytic conversion of carbon dioxide to methanol, ethanol and acetic acid. Satalysts having different catalytic functions were synthesized and combined in different ways t...This paper reports an experimental study on catalytic conversion of carbon dioxide to methanol, ethanol and acetic acid. Satalysts having different catalytic functions were synthesized and combined in different ways to enhance the selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played an important role in achieving the desired product selectivity. We speculate that if methanol synthesis sites were located adjacent to the C--C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using a high temperature methanol catalyst PdZnA1 in the combined catalyst system was demonstrated. In the presence of PdZnA1 catalyst, the combined catalyst system was stable at 380 ~C. It was observed that, at high temperature, kinetics favored oxygenate formation. The results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carded out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.展开更多
基金Natural Science Foundation of State Key Laboratory of Coal Conversion(No09-610)
文摘Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method, it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol, the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species.
文摘改性费托合成催化剂(尤其是CuCo催化剂)在合成气制乙醇及高级醇反应中具有高的催化活性和总醇选择性,被认为是潜在的工业催化剂。采用蒸发诱导自组装(EISA)法和共沉淀(CP)法制备了一系列CuCoZr催化剂,考察了制备方法及EISA法制备的催化剂Cu/Co原子比对合成气制乙醇及高级醇性能的影响。采用N物理吸附-脱附、小角X射线衍射(XRD)、原位XRD、透射电镜(TEM)、H_(2)-程序升温还原(TPR)、CO-程序升温脱附(TPD)和原位红外漫反射光谱(DRIFT)对催化剂进行表征,分析了合成气在Cu/Co原子比为3∶1的Cu_(3)Co_(1)Zr催化剂表面的反应路径。结果表明,EISA法制备的Cu Co Zr催化剂为有序介孔结构,比表面积随Cu/Co原子比的增加先增大后减小,其中Cu_(3)Co_(1)Zr催化剂比表面积和CO吸附量均为最大,分别为143m^(2)/g和0.33mmol/g,催化剂的Cu晶粒尺寸仅为9.1nm。在催化合成气制醇的反应中CO转化率达到74.9%,总醇中的高级醇时空收率达到75.2mg/(g_(cat)·h),乙醇物质的量分数为31.0%,明显优于共沉淀法制备的组成相同的CuCoZr-CP催化剂。
基金funding for this work was provided by Ocean Ethanol LLC
文摘This paper reports an experimental study on catalytic conversion of carbon dioxide to methanol, ethanol and acetic acid. Satalysts having different catalytic functions were synthesized and combined in different ways to enhance the selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played an important role in achieving the desired product selectivity. We speculate that if methanol synthesis sites were located adjacent to the C--C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using a high temperature methanol catalyst PdZnA1 in the combined catalyst system was demonstrated. In the presence of PdZnA1 catalyst, the combined catalyst system was stable at 380 ~C. It was observed that, at high temperature, kinetics favored oxygenate formation. The results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carded out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.