期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Higher Order Multipole Potentials and Electrostatic Screening Effects on Cohesive Energy and Bulk Modulus of Metallic Nanoparticles
1
作者 T.Barakat 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第12期1125-1129,共5页
Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms,... Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles. 展开更多
关键词 higher order multipole potentials electrostatic screening effect size-dependent cohesive energy size-dependent bulk modulus metallic nanoparticles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部