A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in ...A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.展开更多
Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient di...Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.展开更多
基金Project(20080431344) supported by Postdoctoral Science Foundation of ChinaProject(51021001) supported by the National Natural Science Foundation of China
文摘A generalized form of material gradation applicable to a more broad range of functionally graded materials(FGMs) was presented.With the material model,analytical expressions of crack tip higher order stress fields in a series form for opening mode and shear mode cracks under quasi-static loading were developed through the approach of asymptotic analysis.Then,a numerical experiment was conducted to verify the accuracy of the developed expressions for representing crack tip stress fields and their validity in full field data analysis by using them to extract the stress intensity factors from the results of a finite element analysis by local collocation and then comparing the estimations with the existing solution.The expressions show that nonhomogeneity parameters are embedded in the angular functions associated with higher terms in a recursive manner and at least the first three terms in the expansions must be considered to explicitly account for material nonhomogeneity effects on crack tip stress fields in the case of FGMs.The numerical experiment further confirms that the addition of the nonhomogeneity specific terms in the expressions not only improves estimates of stress intensity factor,but also gives consistent estimates as the distance away from the crack tip increases.Hence,the analytical expressions are suitable for the representation of crack tip stress fields and the analysis of full field data.
基金Projects(90305023 59731020) supported by the National Natural Science Foundation of China
文摘Higher order stress fields for a mode Ⅰ crack perpendicular to the direction of property variation in a functionally gradient material(FGM), which has an exponential variation of elastic modulus along the gradient direction, were obtained through an asymptotic analysis. The Poisson’s ratio of the FGMs was assumed to be constant throughout the analysis. The first five terms in the asymptotic expansions of crack tip stress fields were derived to bring out the influence of nonhomogeneity on the structure of the stress field explicitly. The analysis reveals that only the higher order terms in the expansion are influenced by the material nonhomogeneity. Moreover, it can be seen from expressions of higher order stress fields that at least three terms must be considered in the case of FGMs in order to explicitly account for the nonhomogeneity effects on the structure of crack tip stress fields.