The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, a...The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, and the bonding mechanism among SiC particulates in preforms was also discussed. Results show that, after heating to 1 100 ~C and holding for 2 h, a uniform and interconnected structure in the SiC preforms can be obtained by using starch, stearic acid, and graphite respectively as the pore-forming agents, which benefits the subsequent infiltration by the molten metals. More neck-like-jointing among SiC particulate by using graphite as the pore-forming agent improves the dimensional accuracy and compressive strength of the preform. Besides, the properties of the preforms by the binder bonding are better than those by the oxidation bonding, which is mainly because the mixed neck-like-jointing and binder at high temperature provide effective bonding together.展开更多
As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highe...As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.展开更多
The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two meth...The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two methods are close to each other with a correlation coefficient of 0.96. Furthermore, the hydrogen-bonding energies based on the substitution method are consistent with the geometrical features of intramolecular hydrogen bonds. Both of them demonstrate that the substitution method is capable of providing a good estimation of intramolecular hydrogen-bonding energy.展开更多
The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the...The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.展开更多
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ...The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.展开更多
To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, ...To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.展开更多
Mine reclamation bonds are used in countries with mineral mining to ensure that reclamation of the mined area is completed. The United States, Canada, and Australia are countries with established mine reclamation bond...Mine reclamation bonds are used in countries with mineral mining to ensure that reclamation of the mined area is completed. The United States, Canada, and Australia are countries with established mine reclamation bond programs, with the United States coal system having been in place since 1977. China implemented a bonding system in 1998 and by 2013 all 31 provinces had established a system. An effective bonding system must be conditioned on fair and enforceable nationwide reclamation standard, stimulate companies to conduct reclamation by forming economic incentives rather than penalties that become a liability, and allow for full public participation. Based on these principles, this paper compares seven important factors for a successful reclamation bonding system: laws and regulations, administrative authority, bond types, bond size, calculation method, bond release, and public participation. The results show variation in policies and procedures for bonding among countries. Using principles and policies primarily from the United States, China should establish a national reclamation bonding system with legislation that forms a national authority to oversee and enforce reclamation standards and bond requirements. In addition, China can expand bond financial types and strategies, set the size of reclamation bonds at the level of a third-party reclamation cost, and set unified standards for calculation. Phased bond release should be established with specific reclamation criteria for each phase of release. Finally, bonding regulations should clearly identify opportunities for full public participation in the process.展开更多
Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some dis...Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some disadvantages and the evaluated results are only simple figures and always rely on the subjective experience of the operator. A new electrochemical method for evaluating the RCD of coatings, that is, the potentiostatic evaluation method (PEM), was developed and studied. During potentiostatic anodic polarization testing, the changes of stable polarization current of specimens before and after cathodic disbonding (CD) were measured, and the degree of cathodic disbondment of the coating was quantitatively evaluated, among which the equivalent cathodic disbonded distance AD was suggested as a parameter for evaluating the RCD. A series of testing parameters of the PEM were determined in these experiments.展开更多
Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentati...Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentation behavior with a large external forces exerted,a freeze-bond model based on the dilated polyhedral discrete element method(DEM)is proposed.Herein,imaginary bonding is initialized at the contact points to transmit forces and moments,and the initiation of the damage is detected using the hybrid fracture model.The model is validated through the qualitative agreement between the simulation results and the analytical solution of two bonding particles.To study the effect of freeze-bond on the floating ice rubble,punch-through tests were simulated on the ice rubble under freezing and nonfreezing conditions.The deformation and resistance of the ice rubble are investigated during indenter penetration.The influence of the internal friction coefficient on the strength of the ice rubble is determined.The results indicate that the proposed model can properly describe the consolidated ice rubble,and the freeze-bond effect is of great significance to the ice rubble properties.展开更多
In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have disc...In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.展开更多
Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes...Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.展开更多
Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response...Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.展开更多
In this paper, two types of high loft nonwoven fabrics have been constructed in the laboratory apparatus made by ourselves with different binders (polyamide and polyethylene powder) and varying binder contents (10%, 2...In this paper, two types of high loft nonwoven fabrics have been constructed in the laboratory apparatus made by ourselves with different binders (polyamide and polyethylene powder) and varying binder contents (10%, 20%, 30% and 40%). The tensile and compression properties of these nonwoven fabrics were tested. It was found that one can reduce powder binder content to increase loft and softness of nonwoven fabrics, but it has to sacrifice its tensile strength. Adhesion force between binder and single fibre was also explored. The experiments showed that the adhesion force at the interface between binder and fibre depends on the fibre variety, the fibre surface morphology, heating temperature and heating time etc..展开更多
It is experimentally well established that the phenolic systems such as phenol and diphenols undergo strong hydrogen bonding interaction with water molecule. But, the possible mode hydrogen bonding in phenol-water sys...It is experimentally well established that the phenolic systems such as phenol and diphenols undergo strong hydrogen bonding interaction with water molecule. But, the possible mode hydrogen bonding in phenol-water systems may be of different types. Although, the experimental methods are not always well enough to give the proper hydrogen bonding conformations in the phenol-water complexes. The hydrogen bonding ability in phenol-water systems can directly be influenced by changing the interacting sites in the given molecular systems, which could be investigated by theoretical studies. Generally, in phenol-water system, the hydrogen bonding is taking place through −OH group of phenol with water molecule, and this kind of interactions between phenol-water and diphenol-water complexes have been extensively investigated in electronic ground state by Quantum Mechanical MP4 calculations. It is also very important to study the stability of different phenol-water complexes and to find out the proper phenol-water complexes with minimized interaction energy. This study will also be helpful for understanding the effect of hydrogen bonding interaction in a better way on other aromatic systems.展开更多
In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specia...In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.展开更多
In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation ...In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.展开更多
The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bon...The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.展开更多
基金Funded by the National Natural Science Foundation of China(No.51166011)Aviation Science Foundation(No.2012ZF56024)Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province(Nanchang Hangkong University)(No.JW201423003)
文摘The preforms with high SiC volume fraction (〉50%) were successfully fabricated by two bonding methods. Moreover, the dimensional change, compressive strength, and microstructure of SiC preforms were investigated, and the bonding mechanism among SiC particulates in preforms was also discussed. Results show that, after heating to 1 100 ~C and holding for 2 h, a uniform and interconnected structure in the SiC preforms can be obtained by using starch, stearic acid, and graphite respectively as the pore-forming agents, which benefits the subsequent infiltration by the molten metals. More neck-like-jointing among SiC particulate by using graphite as the pore-forming agent improves the dimensional accuracy and compressive strength of the preform. Besides, the properties of the preforms by the binder bonding are better than those by the oxidation bonding, which is mainly because the mixed neck-like-jointing and binder at high temperature provide effective bonding together.
文摘As part of an international research project—funded by the European Union—capillary glasses for facades are being developed exploiting storage energy by means of fluids flowing through the capillaries. To meet highest visual demands, acrylate adhesives and EVA films are tested as possible bonding materials for the glass setup. Especially non-destructive methods (visual analysis, analysis of birefringent properties and computed tomographic data) are applied to evaluate failure patterns as well as the long-term behavior considering climatic influences. The experimental investigations are presented after different loading periods, providing information of failure developments. In addition, detailed information and scientific findings on the application of computed tomographic analyses are presented.
基金the National Natural Science Foundation of China (No. 20573049)
文摘The intramolecular hydrogen-bonding energies for eighteen molecules were calculated based on the substitution method, and compared with those predicted by the cis-trans method. The energy values obtained from two methods are close to each other with a correlation coefficient of 0.96. Furthermore, the hydrogen-bonding energies based on the substitution method are consistent with the geometrical features of intramolecular hydrogen bonds. Both of them demonstrate that the substitution method is capable of providing a good estimation of intramolecular hydrogen-bonding energy.
文摘The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
文摘The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens.
基金Funded by the General Program of National Natural Science Foundation of China(Nos.51474189 and 51674222)the Excellent Youth Foundation of Hebei Scientific Committee,China(No.E2018203446)the Scientific Research Foundation of the Higher Education Institutions of Hebei Province,China(No.QN2015214)
文摘To explore the complex thermal-mechanical-chemical behavior in the solid-liquid cast-roll bonding(SLCRB) of Cu/Al cladding strip, numerical simulations were conducted from both macro and micro scales. In macro-scale, with birth and death element method, a thermo-mechanical coupled finite element model(FEM) was set up to explore the temperature and contact pressure distribution at the Cu/Al bonding interface in the SLCRB process. Taking these macro-scale simulation results as boundary conditions, we simulated the atom diffusion law of the bonding interface by molecular dynamics(MD) in micro-scale. The results indicate that the temperature in Cu/Al bonding interface deceases from 700 to 320 ℃ from the entrance to the exit of caster, and the peak of contact pressure reaches up to 140 MPa. The interfacial diffusion thickness depends on temperature and rolling reduction, higher temperature results in larger thickness, and the rolling reduction below kiss point leads to significant elongation deformation of cladding strip which yields more newborn interface with fresh metal and make the diffusion layer thinner. The surface roughness of Cu strip was found to be benefit to atoms diffusion in the Cu/Al bonding interface. Meanwhile, combined with the SEM-EDS observation on the microstructure and composition in the bonding interface of the experimental samples acquired from the castrolling bite, it is revealed that the rolling reduction and severe elongation deformation in the solid-solid contact zone below kiss point guarantee the satisfactory metallurgical bonding with thin and smooth diffusion layer. The bonding mechanisms of reactive diffusion, mechanical interlocking and crack bonding are proved to coexist in the SLCRB process.
文摘Mine reclamation bonds are used in countries with mineral mining to ensure that reclamation of the mined area is completed. The United States, Canada, and Australia are countries with established mine reclamation bond programs, with the United States coal system having been in place since 1977. China implemented a bonding system in 1998 and by 2013 all 31 provinces had established a system. An effective bonding system must be conditioned on fair and enforceable nationwide reclamation standard, stimulate companies to conduct reclamation by forming economic incentives rather than penalties that become a liability, and allow for full public participation. Based on these principles, this paper compares seven important factors for a successful reclamation bonding system: laws and regulations, administrative authority, bond types, bond size, calculation method, bond release, and public participation. The results show variation in policies and procedures for bonding among countries. Using principles and policies primarily from the United States, China should establish a national reclamation bonding system with legislation that forms a national authority to oversee and enforce reclamation standards and bond requirements. In addition, China can expand bond financial types and strategies, set the size of reclamation bonds at the level of a third-party reclamation cost, and set unified standards for calculation. Phased bond release should be established with specific reclamation criteria for each phase of release. Finally, bonding regulations should clearly identify opportunities for full public participation in the process.
基金This work is financially supported by the National Natural Science Foundation of China (No.2992021).
文摘Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some disadvantages and the evaluated results are only simple figures and always rely on the subjective experience of the operator. A new electrochemical method for evaluating the RCD of coatings, that is, the potentiostatic evaluation method (PEM), was developed and studied. During potentiostatic anodic polarization testing, the changes of stable polarization current of specimens before and after cathodic disbonding (CD) were measured, and the degree of cathodic disbondment of the coating was quantitatively evaluated, among which the equivalent cathodic disbonded distance AD was suggested as a parameter for evaluating the RCD. A series of testing parameters of the PEM were determined in these experiments.
基金the National Key Research and Devel-opment Program of China(Grant No.2018YFA0605902)the National Natural Science Foun-dation of China(Grant Nos.20212024,11872136)China Postdoctoral Science Foundation(Grant No.2020M670746).
文摘Freezing in ice rubble is a common phenomenon in cold regions,which can consolidate loose blocks and change their mechanical properties.To model the cohesive effect in frozen ice rubble,and to describe the fragmentation behavior with a large external forces exerted,a freeze-bond model based on the dilated polyhedral discrete element method(DEM)is proposed.Herein,imaginary bonding is initialized at the contact points to transmit forces and moments,and the initiation of the damage is detected using the hybrid fracture model.The model is validated through the qualitative agreement between the simulation results and the analytical solution of two bonding particles.To study the effect of freeze-bond on the floating ice rubble,punch-through tests were simulated on the ice rubble under freezing and nonfreezing conditions.The deformation and resistance of the ice rubble are investigated during indenter penetration.The influence of the internal friction coefficient on the strength of the ice rubble is determined.The results indicate that the proposed model can properly describe the consolidated ice rubble,and the freeze-bond effect is of great significance to the ice rubble properties.
文摘In this paper we have shown that the invariance of energy(kinetic energy,potential energy)and virtual work is the common feature of vector bond graph and finite element method in struc-tural dynamics.Then we have discussed the vector bond graph representation of finite elementmethod in detail,there are:(1)the transformation of reference systems,(2)the transformation ofinertia matrices,stiffness matrices and vectors of joint force,(3)verctor bond graph representationof Lagrangian dynamic equation of structure.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272027)
文摘Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.
基金Project supported by the National Natural Science Foundation of China (No. 60979001)the Major Project of Civil Aviation University of China (No. CAUC2009ZD0101)
文摘Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.
文摘In this paper, two types of high loft nonwoven fabrics have been constructed in the laboratory apparatus made by ourselves with different binders (polyamide and polyethylene powder) and varying binder contents (10%, 20%, 30% and 40%). The tensile and compression properties of these nonwoven fabrics were tested. It was found that one can reduce powder binder content to increase loft and softness of nonwoven fabrics, but it has to sacrifice its tensile strength. Adhesion force between binder and single fibre was also explored. The experiments showed that the adhesion force at the interface between binder and fibre depends on the fibre variety, the fibre surface morphology, heating temperature and heating time etc..
文摘It is experimentally well established that the phenolic systems such as phenol and diphenols undergo strong hydrogen bonding interaction with water molecule. But, the possible mode hydrogen bonding in phenol-water systems may be of different types. Although, the experimental methods are not always well enough to give the proper hydrogen bonding conformations in the phenol-water complexes. The hydrogen bonding ability in phenol-water systems can directly be influenced by changing the interacting sites in the given molecular systems, which could be investigated by theoretical studies. Generally, in phenol-water system, the hydrogen bonding is taking place through −OH group of phenol with water molecule, and this kind of interactions between phenol-water and diphenol-water complexes have been extensively investigated in electronic ground state by Quantum Mechanical MP4 calculations. It is also very important to study the stability of different phenol-water complexes and to find out the proper phenol-water complexes with minimized interaction energy. This study will also be helpful for understanding the effect of hydrogen bonding interaction in a better way on other aromatic systems.
基金Supported by National Science and Technology Support Program(No.2012BAJ16B05)Program for Liaoning Excellent Talents in University(No.LJQ2011061)
文摘In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.
基金sponsored by the MOEA(Ministry of Economic Affairs)from the Technology Development Program No.109-EC-17-A-25-1581。
文摘In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.
文摘The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.