In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of nor...In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).展开更多
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solutio...Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.展开更多
After studying finite asymptotic expansions in real powers, we have developed a general theory for expansions of type (*) ,x → x0 where the ordered n-tuple forms an asymptotic scale at x0 , i.e. as x → x0, 1 ≤ i ≤...After studying finite asymptotic expansions in real powers, we have developed a general theory for expansions of type (*) ,x → x0 where the ordered n-tuple forms an asymptotic scale at x0 , i.e. as x → x0, 1 ≤ i ≤ n – 1, and is practically assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x o. As in previous papers by the author concerning polynomial, real-power and two-term theory, the locution “factorizational theory” refers to the special approach based on various types of factorizations of a differential operator associated to . Moreover, the guiding thread of our theory is the property of formal differentiation and we aim at characterizing some n-tuples of asymptotic expansions formed by (*) and n -1 expansions obtained by formal applications of suitable linear differential operators of orders 1,2,…,n-1. Some considerations lead to restrict the attention to two sets of operators naturally associated to “canonical factorizations”. This gives rise to conjectures whose proofs build an analytic theory of finite asymptotic expansions in the real domain which, though not elementary, parallels the familiar results about Taylor’s formula. One of the results states that to each scale of the type under consideration it remains associated an important class of functions (namely that of generalized convex functions) enjoying the property that the expansion(*), if valid, is automatically formally differentiable n-1 times in two special senses.展开更多
This paper, divided into three parts (Part II-A, Part II-B and Part II-C), contains the detailed factorizational theory of asymptotic expansions of type (?)?, , , where the asymptotic scale?, , is assumed to be an ext...This paper, divided into three parts (Part II-A, Part II-B and Part II-C), contains the detailed factorizational theory of asymptotic expansions of type (?)?, , , where the asymptotic scale?, , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of . It follows two pre-viously published papers: the first, labelled as Part I, contains the complete (elementary but non-trivial) theory for;the second is a survey highlighting only the main results without proofs. All the material appearing in §2 of the survey is here reproduced in an expanded form, as it contains all the preliminary formulas necessary to understand and prove the results. The remaining part of the survey—especially the heuristical considerations and consequent conjectures in §3—may serve as a good introduction to the complete theory.展开更多
In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypers...In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.展开更多
Part II-B of our work continues the factorizational theory of asymptotic expansions of type (*) , , where the asymptotic scale , , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of ...Part II-B of our work continues the factorizational theory of asymptotic expansions of type (*) , , where the asymptotic scale , , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x0. The main result states that to each scale of this type it remains as-sociated an important class of functions (namely that of generalized convex functions) enjoying the property that the expansion (*), if valid, is automatically formally differentiable n ? 1 times in the two special senses characterized in Part II-A. A second result shows that formal applications of ordinary derivatives to an asymptotic expansion are rarely admissible and that they may also yield skew results even for scales of powers.展开更多
In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of t...In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators.展开更多
In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are s...In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are somewhat demanding except when all the involved functions are regularly varying. Next, we give an exposition of three types of exponential variation with an exhaustive list of various asymptotic functional equations satisfied by these functions and detailed results concerning operations on them. Simple applications to integrals of a product and asymptotic behavior of sums are given. The paper concludes with applications of higher-order regular, rapid or exponential variation to asymptotic expansions for an expression of type f(x+r(x)).展开更多
The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in ...The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.展开更多
Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of ...Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of higher-order asymptotically-varying functions where “asymptotically” stands for one of the adverbs “regularly, smoothly, rapidly, exponentially”. For order 1 the theory of regularly-varying functions (with a minimum of regularity such as measurability) is well established and well developed whereas for higher orders involving differentiable functions we encounter different approaches in the literature not linked together, and the cases of rapid or exponential variation, even of order 1, are not systrematically treated. In this semi-expository paper we systematize much scattered matter concerning the pertinent theory of such classes of functions hopefully being of help to those who need these results for various applications. The present Part I contains the higher-order theory for regular, smooth and rapid variation.展开更多
The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, ...The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.展开更多
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and unif...Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.展开更多
In this note we establish two theorems concerning asymptotic expansion of Riemann-Siegel integrals as well as formula of generating function (double series) of coefficents of that expansion (for computation aims);...In this note we establish two theorems concerning asymptotic expansion of Riemann-Siegel integrals as well as formula of generating function (double series) of coefficents of that expansion (for computation aims); we also discuss similar results for Dirichlet series (L(s, fh) and L(s, X)), with m odd integer and X ( n ) (mod( m ) ) (even) primitive characters ( inappendix B ) .展开更多
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
We call “asymptotic mean” (at +∞) of a real-valued function the number, supposed to exist, , and highlight its role in the geometric theory of asymptotic expansions in the real domain of type (*) where the comparis...We call “asymptotic mean” (at +∞) of a real-valued function the number, supposed to exist, , and highlight its role in the geometric theory of asymptotic expansions in the real domain of type (*) where the comparison functions , forming an asymptotic scale at +∞, belong to one of the three classes having a definite “type of variation” at +∞, slow, regular or rapid. For regularly varying comparison functions we can characterize the existence of an asymptotic expansion (*) by the nice property that a certain quantity F(t) has an asymptotic mean at +∞. This quantity is defined via a linear differential operator in f and admits of a remarkable geometric interpretation as it measures the ordinate of the point wherein that special curve , which has a contact of order n - 1 with the graph of f at the generic point t, intersects a fixed vertical line, say x = T. Sufficient or necessary conditions hold true for the other two classes. In this article we give results for two types of expansions already studied in our current development of a general theory of asymptotic expansions in the real domain, namely polynomial and two-term expansions.展开更多
In this article,the author extends the validity of a uniform asymptotic expansion of the Hermite polynomials Hn(√2n+1α)to include all positive values of α. His method makes use of the rational functions introduc...In this article,the author extends the validity of a uniform asymptotic expansion of the Hermite polynomials Hn(√2n+1α)to include all positive values of α. His method makes use of the rational functions introduced by Olde Daalhuis and Temme (SIAM J.Math.Anal.,(1994),25:304-321).A new estimate for the remainder is given.展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting...This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition.展开更多
We present a family of formal expansions for the density function of a general one-dimensional asymptotic normal sequence Xn. Members of the family are indexed by a parameter τ with an interval domain which we refer ...We present a family of formal expansions for the density function of a general one-dimensional asymptotic normal sequence Xn. Members of the family are indexed by a parameter τ with an interval domain which we refer to as the spectrum of the family. The spectrum provides a unified view of known expansions for the density of Xn. It also provides a means to explore for new expansions. We discuss such applications of the spectrum through that of a sample mean and a standardized mean. We also discuss a related expansion for the cumulative distribution function of Xn.展开更多
In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican ...In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican Hat wavelet transform are obtained as special cases.展开更多
文摘In this paper,Let M_(n)denote the maximum of logarithmic general error distribution with parameter v≥1.Higher-order expansions for distributions of powered extremes M_(n)^(p)are derived under an optimal choice of normalizing constants.It is shown that M_(n)^(p),when v=1,converges to the Frechet extreme value distribution at the rate of 1/n,and if v>1 then M_(n)^(p)converges to the Gumbel extreme value distribution at the rate of(loglogn)^(2)=(log n)^(1-1/v).
基金supported by the National Natural Science Foundation of China (Grants 11332004, 11572071)the Program for Changjiang Scholars and Innovative Research Team in Dalian University of Technology (PCSIRT)+2 种基金111 Project (Grant B14013)the CATIC Industrial Production Projects (Grant CXY2013DLLG32)the Fundamental Research Funds for the Central Universities (Grant DUT15ZD101)
文摘Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.
文摘After studying finite asymptotic expansions in real powers, we have developed a general theory for expansions of type (*) ,x → x0 where the ordered n-tuple forms an asymptotic scale at x0 , i.e. as x → x0, 1 ≤ i ≤ n – 1, and is practically assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x o. As in previous papers by the author concerning polynomial, real-power and two-term theory, the locution “factorizational theory” refers to the special approach based on various types of factorizations of a differential operator associated to . Moreover, the guiding thread of our theory is the property of formal differentiation and we aim at characterizing some n-tuples of asymptotic expansions formed by (*) and n -1 expansions obtained by formal applications of suitable linear differential operators of orders 1,2,…,n-1. Some considerations lead to restrict the attention to two sets of operators naturally associated to “canonical factorizations”. This gives rise to conjectures whose proofs build an analytic theory of finite asymptotic expansions in the real domain which, though not elementary, parallels the familiar results about Taylor’s formula. One of the results states that to each scale of the type under consideration it remains associated an important class of functions (namely that of generalized convex functions) enjoying the property that the expansion(*), if valid, is automatically formally differentiable n-1 times in two special senses.
文摘This paper, divided into three parts (Part II-A, Part II-B and Part II-C), contains the detailed factorizational theory of asymptotic expansions of type (?)?, , , where the asymptotic scale?, , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of . It follows two pre-viously published papers: the first, labelled as Part I, contains the complete (elementary but non-trivial) theory for;the second is a survey highlighting only the main results without proofs. All the material appearing in §2 of the survey is here reproduced in an expanded form, as it contains all the preliminary formulas necessary to understand and prove the results. The remaining part of the survey—especially the heuristical considerations and consequent conjectures in §3—may serve as a good introduction to the complete theory.
文摘In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.
文摘Part II-B of our work continues the factorizational theory of asymptotic expansions of type (*) , , where the asymptotic scale , , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x0. The main result states that to each scale of this type it remains as-sociated an important class of functions (namely that of generalized convex functions) enjoying the property that the expansion (*), if valid, is automatically formally differentiable n ? 1 times in the two special senses characterized in Part II-A. A second result shows that formal applications of ordinary derivatives to an asymptotic expansion are rarely admissible and that they may also yield skew results even for scales of powers.
基金Supported by the Natural Science Foundation of Beijing(1072006)
文摘In this paper, we derive the complete asymptotic expansion of classical Baskakov operators Vn (f;x) in the form of all coefficients of n^-k, k = 0, 1... being calculated explic- itly in terms of Stirling number of the first and second kind and another number G(i, p). As a corollary, we also get the Voronovskaja-type result for the operators.
文摘In this second part, we thoroughly examine the types of higher-order asymptotic variation of a function obtained by all possible basic algebraic operations on higher-order varying functions. The pertinent proofs are somewhat demanding except when all the involved functions are regularly varying. Next, we give an exposition of three types of exponential variation with an exhaustive list of various asymptotic functional equations satisfied by these functions and detailed results concerning operations on them. Simple applications to integrals of a product and asymptotic behavior of sums are given. The paper concludes with applications of higher-order regular, rapid or exponential variation to asymptotic expansions for an expression of type f(x+r(x)).
文摘The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.
文摘Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of higher-order asymptotically-varying functions where “asymptotically” stands for one of the adverbs “regularly, smoothly, rapidly, exponentially”. For order 1 the theory of regularly-varying functions (with a minimum of regularity such as measurability) is well established and well developed whereas for higher orders involving differentiable functions we encounter different approaches in the literature not linked together, and the cases of rapid or exponential variation, even of order 1, are not systrematically treated. In this semi-expository paper we systematize much scattered matter concerning the pertinent theory of such classes of functions hopefully being of help to those who need these results for various applications. The present Part I contains the higher-order theory for regular, smooth and rapid variation.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604036 and State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402" The authors would like to thank Prof. Sen-Yue Lou for his help and discussion.
文摘The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
基金Project supported by Scientific Research Common Program of Beijing Municipal Commission of Education of China (No.KM200310015060)
文摘Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds axe discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
文摘In this note we establish two theorems concerning asymptotic expansion of Riemann-Siegel integrals as well as formula of generating function (double series) of coefficents of that expansion (for computation aims); we also discuss similar results for Dirichlet series (L(s, fh) and L(s, X)), with m odd integer and X ( n ) (mod( m ) ) (even) primitive characters ( inappendix B ) .
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
文摘We call “asymptotic mean” (at +∞) of a real-valued function the number, supposed to exist, , and highlight its role in the geometric theory of asymptotic expansions in the real domain of type (*) where the comparison functions , forming an asymptotic scale at +∞, belong to one of the three classes having a definite “type of variation” at +∞, slow, regular or rapid. For regularly varying comparison functions we can characterize the existence of an asymptotic expansion (*) by the nice property that a certain quantity F(t) has an asymptotic mean at +∞. This quantity is defined via a linear differential operator in f and admits of a remarkable geometric interpretation as it measures the ordinate of the point wherein that special curve , which has a contact of order n - 1 with the graph of f at the generic point t, intersects a fixed vertical line, say x = T. Sufficient or necessary conditions hold true for the other two classes. In this article we give results for two types of expansions already studied in our current development of a general theory of asymptotic expansions in the real domain, namely polynomial and two-term expansions.
文摘In this article,the author extends the validity of a uniform asymptotic expansion of the Hermite polynomials Hn(√2n+1α)to include all positive values of α. His method makes use of the rational functions introduced by Olde Daalhuis and Temme (SIAM J.Math.Anal.,(1994),25:304-321).A new estimate for the remainder is given.
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition.
文摘We present a family of formal expansions for the density function of a general one-dimensional asymptotic normal sequence Xn. Members of the family are indexed by a parameter τ with an interval domain which we refer to as the spectrum of the family. The spectrum provides a unified view of known expansions for the density of Xn. It also provides a means to explore for new expansions. We discuss such applications of the spectrum through that of a sample mean and a standardized mean. We also discuss a related expansion for the cumulative distribution function of Xn.
文摘In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican Hat wavelet transform are obtained as special cases.