Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
This paper centers on the integrated learning of English and law in China.Firstly,it outlines the importance of English in the solution of the ever increasing legal disputes between China and the outside world,which i...This paper centers on the integrated learning of English and law in China.Firstly,it outlines the importance of English in the solution of the ever increasing legal disputes between China and the outside world,which inevitably involves an integrated learning of English and law.Secondly,it points out that the content of legal English reflects a combination of legal knowledge and English skills.Thirdly,it expounds on the difficulties that Chinese English majors are facing in the process of learning English and law simultaneously and furnishes some practical suggestions.展开更多
Traditional methods for measuring single-cell mechanical characteristics face several challenges,including lengthy measurement times,low throughput,and a requirement for advanced technical skills.To overcome these cha...Traditional methods for measuring single-cell mechanical characteristics face several challenges,including lengthy measurement times,low throughput,and a requirement for advanced technical skills.To overcome these challenges,a novel machine learning(ML)approach is implemented based on the convolutional neural networks(CNNs),aiming at predicting cells'elastic modulus and constitutive equations from their deformations while passing through micro-constriction channels.In the present study,the computational fluid dynamics technology is used to generate a dataset within the range of the cell elastic modulus,incorporating three widely-used constitutive models that characterize the cellular mechanical behavior,i.e.,the Mooney-Rivlin(M-R),Neo-Hookean(N-H),and Kelvin-Voigt(K-V)models.Utilizing this dataset,a multi-input convolutional neural network(MI-CNN)algorithm is developed by incorporating cellular deformation data as well as the time and positional information.This approach accurately predicts the cell elastic modulus,with a coefficient of determination R^(2)of 0.999,a root mean square error of 0.218,and a mean absolute percentage error of 1.089%.The model consistently achieves high-precision predictions of the cellular elastic modulus with a maximum R^(2)of 0.99,even when the stochastic noise is added to the simulated data.One significant feature of the present model is that it has the ability to effectively classify the three types of constitutive equations we applied.The model accurately and reliably predicts single-cell mechanical properties,showcasing a robust ability to generalize.We demonstrate that incorporating deformation features at multiple time points can enhance the algorithm's accuracy and generalization.This algorithm presents a possibility for high-throughput,highly automated,real-time,and precise characterization of single-cell mechanical properties.展开更多
This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is apprecia...This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.展开更多
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens...This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
Cement-based grouting has been widely used in mining engineering;its constitutive law has not been comprehensively studied.In this study,a novel constitutive law of cement-grouted coal specimens(CGCS)was developed usi...Cement-based grouting has been widely used in mining engineering;its constitutive law has not been comprehensively studied.In this study,a novel constitutive law of cement-grouted coal specimens(CGCS)was developed using hybrid machine learning(ML)algorithms.Shear tests were performed on CGCS for the analysis of stress-strain curves and the preparation of the dataset.To maintain the interpretation of the trained ML models,regression tree(RT)was used as the main technique.The effect of maximum RT depth(Maxdepth)on its performance was studied,and the hyperparameters of RT were tuned using the genetic algorithm(GA).The RT performance was also compared with ensemble learning techniques.The optimum correlation coefficient on the training set was determined as 0.835,0.946,0.981,and 0.985 for RT models with Maxdepth=3,5,7,and 9,respectively.The overall correlation coefficient was over 0.9 when the Maxdepth≥5,indicating that the constitutive law of CGCS can be well described.However,the failure type of CGCS could not be captured using the trained RT models.Random forest was found to be the optimum algorithm for the constitutive modeling of CGCS,while RT with the Maxdepth=3 performed the worst.展开更多
This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to...This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to not only guarantee asymptotical stability of dynamic neural networks but also reduce the effect of external disturbance to an y2-y∞ induced norm constraint. It is shown that the design of the y2-y∞ learning law for such neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. A numerical example is presented to demonstrate the validity of the proposed learning law.展开更多
The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchic...The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchical deep deterministic policy gradient(DDPG)algorithm.The reward functions are constructed to minimize the line-of-sight(LOS)angle rate and avoid the threat caused by the opposed obstacles.To attenuate the chattering of the acceleration,a hierarchical reinforcement learning structure and an improved reward function with action penalty are put forward.The simulation results validate that the missile under the proposed method can hit the target successfully and keep away from the threatened areas effectively.展开更多
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c...A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.展开更多
The use of clicker technology as a tool for promoting learning, let along deep learning, is hotly debated and has its proponents and opponents. With the question still open, this paper examines the use of this technol...The use of clicker technology as a tool for promoting learning, let along deep learning, is hotly debated and has its proponents and opponents. With the question still open, this paper examines the use of this technology in fostering critical thinking and other higher-order learning and team-building skills, in the context of two entry-level psychology courses. The results obtained indicate that from the perspectives of both the student and the instructor, the integration of this technology was positively perceived to enhance the learning process and the acquisition of these skills. It would seem these concepts are, after all, not antithetical.展开更多
The concept of reward is fundamental in reinforcement learning with a wide range of applications in natural and social sciences.Seeking an interpretable reward for decision-making that largely shapes the system's ...The concept of reward is fundamental in reinforcement learning with a wide range of applications in natural and social sciences.Seeking an interpretable reward for decision-making that largely shapes the system's behavior has always been a challenge in reinforcement learning.In this work,we explore a discrete-time reward for reinforcement learning in continuous time and action spaces that represent many phenomena captured by applying physical laws.We find that the discrete-time reward leads to the extraction of the unique continuous-time decision law and improved computational efficiency by dropping the integrator operator that appears in classical results with integral rewards.We apply this finding to solve output-feedback design problems in power systems.The results reveal that our approach removes an intermediate stage of identifying dynamical models.Our work suggests that the discrete-time reward is efficient in search of the desired decision law,which provides a computational tool to understand and modify the behavior of large-scale engineering systems using the optimal learned decision.展开更多
With the advent of the learning age,the connotation of the“right to education”can no longer meet the requirements of personal and social development,so it is necessary to introduce the concept of the right to learn ...With the advent of the learning age,the connotation of the“right to education”can no longer meet the requirements of personal and social development,so it is necessary to introduce the concept of the right to learn with a richer connotation.As a basic human right,the proposal and guarantee of the right to learn directly respond to the practical problems in the information age and the learning age.The right to learn is fundamental freedom enjoyed by everyone to acquire useful knowledge,skill,value,spirit,and attitude through reading,watching,listening,thinking,researching,practicing,being educated,and other learning methods to develop and perfect a personality.The philosophical basis,connotation,attribute,extraterritorial legislative guarantee of the right to learn and the development of the times de termine it should be regarded as a basic human right.Treating the right to learn as a basic human right and systematically guaranteeing it through the amendment of China’s Education Law and other supporting legislation will contribute to the realization of this right,the improvement of national knowledge,and the progress of China’s social civilization.展开更多
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
文摘This paper centers on the integrated learning of English and law in China.Firstly,it outlines the importance of English in the solution of the ever increasing legal disputes between China and the outside world,which inevitably involves an integrated learning of English and law.Secondly,it points out that the content of legal English reflects a combination of legal knowledge and English skills.Thirdly,it expounds on the difficulties that Chinese English majors are facing in the process of learning English and law simultaneously and furnishes some practical suggestions.
基金Project supported by the National Natural Science Foundation of China(Nos.12332016,12172209,and 12202258)the Shanghai Gaofeng Project for University Academic Program Development。
文摘Traditional methods for measuring single-cell mechanical characteristics face several challenges,including lengthy measurement times,low throughput,and a requirement for advanced technical skills.To overcome these challenges,a novel machine learning(ML)approach is implemented based on the convolutional neural networks(CNNs),aiming at predicting cells'elastic modulus and constitutive equations from their deformations while passing through micro-constriction channels.In the present study,the computational fluid dynamics technology is used to generate a dataset within the range of the cell elastic modulus,incorporating three widely-used constitutive models that characterize the cellular mechanical behavior,i.e.,the Mooney-Rivlin(M-R),Neo-Hookean(N-H),and Kelvin-Voigt(K-V)models.Utilizing this dataset,a multi-input convolutional neural network(MI-CNN)algorithm is developed by incorporating cellular deformation data as well as the time and positional information.This approach accurately predicts the cell elastic modulus,with a coefficient of determination R^(2)of 0.999,a root mean square error of 0.218,and a mean absolute percentage error of 1.089%.The model consistently achieves high-precision predictions of the cellular elastic modulus with a maximum R^(2)of 0.99,even when the stochastic noise is added to the simulated data.One significant feature of the present model is that it has the ability to effectively classify the three types of constitutive equations we applied.The model accurately and reliably predicts single-cell mechanical properties,showcasing a robust ability to generalize.We demonstrate that incorporating deformation features at multiple time points can enhance the algorithm's accuracy and generalization.This algorithm presents a possibility for high-throughput,highly automated,real-time,and precise characterization of single-cell mechanical properties.
基金partially supported by the Spanish Ministry of Economy and Competitiveness under grant number DPI2015-64170-R(MINECO/FEDER)
文摘This paper presents an Iterative Learning Control design applied to homing guidance of missiles against maneuvering targets. According to numerical experiments, although an increase of the control energies is appreciated with respect to a previous published base controller for comparison, this strategy, which is simple to realize, is able to reduce the time to reach the head-on condition to target destruction. This fact is important to minimize the missile lateral force-level to fulfill engaging in hyper-sonic target persecutions.
基金supported by the National Natural Science Foundation of China(60674090)Shandong Natural Science Foundation(ZR2017QF016)
文摘This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
基金financially supported by Fundamental Research Funds for the Central Universities(No.2020ZDPY0221)State Key Laboratory for Geo Mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK2002)+1 种基金Fundamental Research Funds for the Central Universities(No.2021QN1003)National Natural Science Foundation of China(Nos.52104106,52174089)。
文摘Cement-based grouting has been widely used in mining engineering;its constitutive law has not been comprehensively studied.In this study,a novel constitutive law of cement-grouted coal specimens(CGCS)was developed using hybrid machine learning(ML)algorithms.Shear tests were performed on CGCS for the analysis of stress-strain curves and the preparation of the dataset.To maintain the interpretation of the trained ML models,regression tree(RT)was used as the main technique.The effect of maximum RT depth(Maxdepth)on its performance was studied,and the hyperparameters of RT were tuned using the genetic algorithm(GA).The RT performance was also compared with ensemble learning techniques.The optimum correlation coefficient on the training set was determined as 0.835,0.946,0.981,and 0.985 for RT models with Maxdepth=3,5,7,and 9,respectively.The overall correlation coefficient was over 0.9 when the Maxdepth≥5,indicating that the constitutive law of CGCS can be well described.However,the failure type of CGCS could not be captured using the trained RT models.Random forest was found to be the optimum algorithm for the constitutive modeling of CGCS,while RT with the Maxdepth=3 performed the worst.
基金Project supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Center for Healthcare Technology Development)
文摘This paper proposes an y2-y∞ learning law as a new learning method for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the y2-y∞ learning law is presented to not only guarantee asymptotical stability of dynamic neural networks but also reduce the effect of external disturbance to an y2-y∞ induced norm constraint. It is shown that the design of the y2-y∞ learning law for such neural networks can be achieved by solving LMIs, which can be easily facilitated by using some standard numerical packages. A numerical example is presented to demonstrate the validity of the proposed learning law.
基金supported by the National Natural Science Foundation of China(62003021,91212304).
文摘The guidance strategy is an extremely critical factor in determining the striking effect of the missile operation.A novel guidance law is presented by exploiting the deep reinforcement learning(DRL)with the hierarchical deep deterministic policy gradient(DDPG)algorithm.The reward functions are constructed to minimize the line-of-sight(LOS)angle rate and avoid the threat caused by the opposed obstacles.To attenuate the chattering of the acceleration,a hierarchical reinforcement learning structure and an improved reward function with action penalty are put forward.The simulation results validate that the missile under the proposed method can hit the target successfully and keep away from the threatened areas effectively.
基金Project(60910005)supported by the National Natural Science Foundation of China
文摘A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed.
文摘The use of clicker technology as a tool for promoting learning, let along deep learning, is hotly debated and has its proponents and opponents. With the question still open, this paper examines the use of this technology in fostering critical thinking and other higher-order learning and team-building skills, in the context of two entry-level psychology courses. The results obtained indicate that from the perspectives of both the student and the instructor, the integration of this technology was positively perceived to enhance the learning process and the acquisition of these skills. It would seem these concepts are, after all, not antithetical.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2024A1515011936)the National Natural Science Foundation of China(62320106008)
文摘The concept of reward is fundamental in reinforcement learning with a wide range of applications in natural and social sciences.Seeking an interpretable reward for decision-making that largely shapes the system's behavior has always been a challenge in reinforcement learning.In this work,we explore a discrete-time reward for reinforcement learning in continuous time and action spaces that represent many phenomena captured by applying physical laws.We find that the discrete-time reward leads to the extraction of the unique continuous-time decision law and improved computational efficiency by dropping the integrator operator that appears in classical results with integral rewards.We apply this finding to solve output-feedback design problems in power systems.The results reveal that our approach removes an intermediate stage of identifying dynamical models.Our work suggests that the discrete-time reward is efficient in search of the desired decision law,which provides a computational tool to understand and modify the behavior of large-scale engineering systems using the optimal learned decision.
基金supported by the Fundamental Research Funds for Central Universities and Jinan University’s Research Center for Party’s Regulations。
文摘With the advent of the learning age,the connotation of the“right to education”can no longer meet the requirements of personal and social development,so it is necessary to introduce the concept of the right to learn with a richer connotation.As a basic human right,the proposal and guarantee of the right to learn directly respond to the practical problems in the information age and the learning age.The right to learn is fundamental freedom enjoyed by everyone to acquire useful knowledge,skill,value,spirit,and attitude through reading,watching,listening,thinking,researching,practicing,being educated,and other learning methods to develop and perfect a personality.The philosophical basis,connotation,attribute,extraterritorial legislative guarantee of the right to learn and the development of the times de termine it should be regarded as a basic human right.Treating the right to learn as a basic human right and systematically guaranteeing it through the amendment of China’s Education Law and other supporting legislation will contribute to the realization of this right,the improvement of national knowledge,and the progress of China’s social civilization.