期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Solution of a One-Dimension Heat Equation Using Higher-Order Finite Difference Methods and Their Stability
1
作者 M. Emran Ali Wahida Zaman Loskor +1 位作者 Samia Taher Farjana Bilkis 《Journal of Applied Mathematics and Physics》 2022年第3期877-886,共10页
One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implic... One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implicit method, and fourth-order implicit Crank-Nicolson finite difference method. Higher-order schemes have complexity in computing values at the neighboring points to the boundaries. It is required there a specification of the values of field variables at some points exterior to the domain. The complexity was incorporated using Hicks approximation. The convergence and stability analysis was also computed for those higher-order finite difference explicit and implicit methods in case of solving a one dimensional heat equation. The obtained numerical results were compared with exact solutions. It is found that backward time and fourth-order centered space implicit scheme along with Hicks approximation performed well over the other mentioned higher-order approaches. 展开更多
关键词 Heat equation Boundary Condition higher-order Finite difference Methods Hicks Approximation
下载PDF
On the Asymptotic Behavior of Second Order Quasilinear Difference Equations
2
作者 Vadivel Sadhasivam Pon Sundar Annamalai Santhi 《Applied Mathematics》 2016年第14期1612-1631,共21页
In this paper, we investigate the asymptotic behavior of the following quasilinear difference equations (E) where , . We classified the solutions into six types by means of their asymptotic behavior. We establish the ... In this paper, we investigate the asymptotic behavior of the following quasilinear difference equations (E) where , . We classified the solutions into six types by means of their asymptotic behavior. We establish the necessary and/or sufficient conditions for such equations to possess a solution of each of these six types. 展开更多
关键词 Asymptotic Behavior Positive Solutions HOMOGENEOUS quasilinear difference equations
下载PDF
Oscillatory and Asymptotic Behavior for Second Order Quasilinear Difference Equations
3
作者 将建初 李小平 《Northeastern Mathematical Journal》 CSCD 2001年第3期315-322,共8页
This paper is concerned with the oscillatory (and nonoscillatory) behavior of solutions of second oder quasilinear difference equations of the type Some necessary and sufficient conditions are given for the equation t... This paper is concerned with the oscillatory (and nonoscillatory) behavior of solutions of second oder quasilinear difference equations of the type Some necessary and sufficient conditions are given for the equation to admit oscillatory and nonoscillatory solutions with special asymptotic properties. These results generalize and improve some known results. 展开更多
关键词 quasilinear difference equation oscillation and nonoscillation asymptotic behavior
下载PDF
THE NUMERICAL SOLUTION OF A SINGULARLY PERTURBED PROBLEM FOR QUASILINEAR PARABOLIC DIFFERENTIAL EQUATION
4
作者 苏煜城 沈全 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第6期497-506,共10页
We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform c... We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L2 norm is proved and numerical examples are presented. 展开更多
关键词 quasilinear parabolic difTerential equation singular perturbation linear three-level difference scheme uniform convergence
下载PDF
PERMANENCE AND ASYMPTOTIC PROPERTIES OF NONLINEAR DELAY DIFFERENCE EQUATIONS
5
作者 李万同 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第11期1273-1280,共8页
The asymptotic behavior of a class of nonlinear delay difference equation wax studied . Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a claxs of nonline... The asymptotic behavior of a class of nonlinear delay difference equation wax studied . Some sufficient conditions are obtained for permanence and global attractivity . The results can be applied to a claxs of nonlinear delay difference equations and to the delay discrete Logistic model and some known results are included. 展开更多
关键词 global attractivity higher-order nonlinear difference equation PERMANENCE DELAY
下载PDF
ON THE NUMERICAL SOLUTION OF QUASILINEAR WAVE EQUATION WITH STRONG DISSIPATIVE TERM 被引量:2
6
作者 Aytekin Gülle 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期806-811,共6页
The numerical solution for a type of quasilinear wave equation is studied.The three-level difference scheme for quasi-linear waver equation with strong dissipative term is constructed and the convergence is proved.The... The numerical solution for a type of quasilinear wave equation is studied.The three-level difference scheme for quasi-linear waver equation with strong dissipative term is constructed and the convergence is proved.The error of the difference solution is estimated.The theoretical results are controlled on a numerical example. 展开更多
关键词 periodical problem quasilinear wave equation difference scheme numerical solution
下载PDF
Refined Scattering and Hermitian Spectral Theory for Linear Higher-Order Schrōdinger Equations
7
作者 GALAKTIONOV V. A. KAMOTSKI I. V. 《Journal of Partial Differential Equations》 2013年第4期305-362,共58页
The Cauchy problem for a linear 2mth-order Schrōdinger equation ut=-i(-△)^mu, in R^N×R+,u|t=0=u0;m≥1 is an integer,is studied, for initial data uo in the weighted space L^2ρ(R^N),withρ^*(x)=e|x|^a... The Cauchy problem for a linear 2mth-order Schrōdinger equation ut=-i(-△)^mu, in R^N×R+,u|t=0=u0;m≥1 is an integer,is studied, for initial data uo in the weighted space L^2ρ(R^N),withρ^*(x)=e|x|^a and a=2m/2m-1∈(1,2].The following five problems are studied: (I) A sharp asymptotic behaviour of solutions as t → +∞ is governed by a discrete spectrum and a countable set Ф of the eigenfunctions of the linear rescaled operator B=-i(-△)^m+1/2my·↓△+N/2mI,with the spectrum σ(B)={λβ=-|β|≥0}. (Ⅱ) Finite-time blow-up local structures of nodal sets of solutions as t → 0^- and a formation of "multiple zeros" are described by the eigenfunctions, being generalized Hermite polynomials, of the "adjoint" operator B=-i(-△)^m-1/2my·↓△,with the same spectrum σ(B^*)=σ(B).Applications of these spectral results also include: (Ⅲ) a unique continuation theorem, and (IV) boundary characteristic point regularity issues. Some applications are discussed for more general linear PDEs and for the nonlinear Schr6dinger equations in the focusing ("+") and defocusing ("-") cases ut=-(-△)^mu±i|u|^p-1u,in R^N×R+,where P〉1,as well as for: (V) the quasilinear Schr6dinger equation of a "porous medium type" ut=-(-△)^m(|u|^nu),in R^N×R+,where n〉0.For the latter one, the main idea towards countable families of nonlinear eigenfunctions is to perform a homotopic path n → 0^+ and to use spectral theory of the pair {B,B^*}. 展开更多
关键词 higher-order Schrōdinger operators rescaled blow-up variables discrete real spec-trum asymptotic behavior nodal sets of solutions unique continuation boundary characteristicpoint regularity quasilinear Schr6dinger equations nonlinear eigenfunctions.
原文传递
非线性奇异差分系统解的快速收敛性 被引量:1
8
作者 王培光 孔甜甜 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期561-564,共4页
讨论一类非线性奇异差分系统初值问题,通过运用微分不等式比较原理,上下解方法和单调迭代技术,对所构造的两个逼近解序列,使用Ascoli-Arzela′s定理,证明了其逼近解序列一致收敛于非线性问题的唯一解,同时,应用拟线性化方法证明了该逼... 讨论一类非线性奇异差分系统初值问题,通过运用微分不等式比较原理,上下解方法和单调迭代技术,对所构造的两个逼近解序列,使用Ascoli-Arzela′s定理,证明了其逼近解序列一致收敛于非线性问题的唯一解,同时,应用拟线性化方法证明了该逼近解序列收敛于唯一解的速度是二次的。 展开更多
关键词 拟线性化方法 奇异系统 差分方程 平方收敛
下载PDF
高阶拟线性时滞差分方程非振动解的存在性与渐近性 被引量:2
9
作者 蒋建初 《娄底师专学报》 2000年第4期41-46,共6页
考虑一类高阶拟线性时滞差分方程给出了存在无界非振动解的充要条件。
关键词 非振动解 高阶拟线性差分方程 不动点定理 存在性 渐近性
下载PDF
一类高阶拟线性方程的非振动准则
10
作者 刘光辉 刘兰初 《科学技术与工程》 2006年第23期4759-4760,共2页
考虑高阶差分方程Δ2(|Δ2yn|α-1Δ2yn)+qn|yτ(n)|β-1yτ(n)=0。α,β是正常数,{qn}n∞0是正实数列,n0∈N0={1,2,…}。limn→∞τ(n)=∞,τ(n)≤n,获得非振动解存在的充要条件。
关键词 拟线性 差分方程 非振动
下载PDF
拟线性抛物型方程奇异摄动问题的数值解法
11
作者 苏煜城 沈全 《应用数学和力学》 EI CSCD 北大核心 1992年第6期479-488,共10页
本文讨论拟线性抛物型方程奇异摄动问题的差分解法,在非均匀网格上建立了线性三层差分格式,并证明了在离散的L_2范数意义下格式的一致收敛性,最后给出了一些数值例子.
关键词 拟线性 抛物型方程 奇异摄动
下载PDF
一类二阶拟线性时滞差分方程的非振动性定理
12
作者 郭洪霞 彭少玉 肖斌 《鲁东大学学报(自然科学版)》 2006年第3期188-191,共4页
研究了一类二阶拟线性时滞差分方程的渐近性,并给出了特殊情况下,此方程存在Ac∞,A0c型非振动解的充要条件以及存在A0∞非振动解的充分条件.
关键词 拟线性时滞差分方程 非振动性 差分算子
下载PDF
一类二阶拟线性差分方程的非振动性定理 被引量:1
13
作者 郭洪霞 王晓静 《曲阜师范大学学报(自然科学版)》 CAS 2002年第1期8-12,共5页
研究了二阶拟线性差分方程Δ(pnφ(Δxn) ) +f(n ,xn) =0的渐近性 ,并给出了当任给 k≠ 0 , ∞n =n0φ-1kpn =∞时此方程存在Ac∞ ,A0c 型非振动解的充要条件以及存在A0 ∞
关键词 拟线性差方程 非振动性定理 差分算子 非振动解 渐近性态 充要条件
下载PDF
二阶拟线性时滞差分方程解的振动性与渐近性 被引量:1
14
作者 蒋波 张善美 《曲阜师范大学学报(自然科学版)》 CAS 2004年第3期19-23,共5页
研究了二阶拟线性时滞差分方程Δ(rn(Δxn) σ) +f(n ,x(h1 (n) ) ,x(h2 (n) ) ,… ,x(hm(n) ) ) =0 ,n∈N(n0 ) ,(E)其中m≥ 1 ,N(n0 ) ={n0 ,n0 +1 ,n0 +2 ,… }的解的振动性与渐近性 .给出了方程 (E)的所有解振动与非振动的一些充要... 研究了二阶拟线性时滞差分方程Δ(rn(Δxn) σ) +f(n ,x(h1 (n) ) ,x(h2 (n) ) ,… ,x(hm(n) ) ) =0 ,n∈N(n0 ) ,(E)其中m≥ 1 ,N(n0 ) ={n0 ,n0 +1 ,n0 +2 ,… }的解的振动性与渐近性 .给出了方程 (E)的所有解振动与非振动的一些充要条件 . 展开更多
关键词 拟线性时滞差分方程 振动 非振动 强超(强次)线性
下载PDF
带强耗散项的拟线性波方程的数值解 被引量:3
15
作者 阿特青古勒 吴承平 张禄坤 《应用数学和力学》 EI CSCD 北大核心 2004年第7期735-740,共6页
 研究了一类拟线性波方程的数值解· 构造了带强耗散项的拟线性波方程的三级差分格式,并证明其收敛性。
关键词 周期问题 拟线性波方程 差分格式 数值解
下载PDF
系数退化的拟线性抛物方程解的存在性
16
作者 潘阳 《吉林省教育学院学报》 2017年第7期81-84,共4页
本文主要研究了一类系数退化的拟线性抛物方程解的存在性。首先利用Rothe方法,将所研究的问题离散化,转化成椭圆问题。进一步利用变分法给出椭圆问题解的存在性。其次构造了两类逼近解,且利用先验估计和弱收敛方法给出退化系数具有正下... 本文主要研究了一类系数退化的拟线性抛物方程解的存在性。首先利用Rothe方法,将所研究的问题离散化,转化成椭圆问题。进一步利用变分法给出椭圆问题解的存在性。其次构造了两类逼近解,且利用先验估计和弱收敛方法给出退化系数具有正下界时拋物问题解的存在性。最后,利用抛物正则化方法以及先验估计,给出所研究问题解的存在性。 展开更多
关键词 Rothe方法 解的存在性 抛物方程 拟线性 差分法
下载PDF
一类二阶拟线性差分方程的振动性定理
17
作者 郭洪霞 《淮北煤师院学报(自然科学版)》 2001年第3期6-11,共6页
研究了二阶拟线性差分方程Δ (pnφ (Δ xn))+ f(n,xn)=0,n∈ N(n0)的振动性,得到了该方程振动的充要条件。
关键词 拟线性差分方程 振动性定理 差分算子 非振动解 强超线性 强次线性
下载PDF
Regional, Single Point, and Global Blow-Up for the Fourth-Order Porous Medium Type Equation with Source
18
作者 GALAKTIONV V.A. 《Journal of Partial Differential Equations》 2010年第2期105-146,共42页
Blow-up behaviour for the fourth-order quasilinear porous medium equation with source,ut=-(|u|^nu)xxxx+|u|^p-1u in R×R+,where n 〉 0, p 〉 1, is studied. Countable and finite families of similarity blow-u... Blow-up behaviour for the fourth-order quasilinear porous medium equation with source,ut=-(|u|^nu)xxxx+|u|^p-1u in R×R+,where n 〉 0, p 〉 1, is studied. Countable and finite families of similarity blow-up patterns of the form us(x,t)=(T-t)^-1/p-1f(y),where y=x/(T-t)^β' β=p-(n+1)/4(p-1),which blow-up as t → T^- 〈∞ are described. These solutions explain key features of regional (for p = n+1), single point (for p 〉 n+1), and global (for p ∈ (1,n+1))blowup. The concepts and various variational, bifurcation, and numerical approaches for revealing the structure and multiplicities of such blow-up patterns are presented. 展开更多
关键词 higher-order quasilinear porous medium parabolic equation finite propagation BLOW-UP similarity solutions variational operators branching.
原文传递
一类二阶拟线性奇异摄动差分方程的数值解
19
作者 汪静 张伟江 《上海交通大学学报》 EI CAS CSCD 北大核心 1995年第3期76-81,共6页
本文考虑一类拟线性奇异摄动差分方程的数值解法.主要思想是用退化方程的解及边界层校正解之和去渐过近似原方程解,并用矩阵的摄动理论及不动点原理证明了在一定条件下其误差是量级.最后给出了数值例子.
关键词 拟线性 退化方程 误差 奇摄动差分方程 数值解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部