In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by u...In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by using the estimates of exponential sums over Galois rings, which is tight for e relatively small to n. We also get an estimate which is suitable for e relatively large to n. Combining the two bounds, we obtain an estimate depending only on n, which shows that the larger n is, the closer to 1/2 the proportion of 1 will be.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.19971096,90104035).
文摘In this paper, we discuss the 0, 1 distribution in the highest level sequence ae-1 of primitive sequence over Z2e generated by a primitive polynomial of degree n. First we get an estimate of the 0, 1 distribution by using the estimates of exponential sums over Galois rings, which is tight for e relatively small to n. We also get an estimate which is suitable for e relatively large to n. Combining the two bounds, we obtain an estimate depending only on n, which shows that the larger n is, the closer to 1/2 the proportion of 1 will be.