期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
HIGHLY SENSITIVE SPECTROPHOTOMETRY OF NIOBIUM
1
作者 Zong Ming LUO Department of Chemical Engineering,Guangdong Institute of Technology,Guangzhou,510090 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第2期131-132,共2页
In pH 2.0-3.0 medium,niobium(v)forms molybdoniobic acid with sodium molybdate.A spectrophotometric method has been developed for the determination of niobium based on the formation of ion-associate compound of molybdo... In pH 2.0-3.0 medium,niobium(v)forms molybdoniobic acid with sodium molybdate.A spectrophotometric method has been developed for the determination of niobium based on the formation of ion-associate compound of molybdoniobate with butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The molar absorptivity is 7.5×10~5 L.mol^(-1).cm^(-1) for niobium at 585 nm. 展开更多
关键词 ACID highly sensitive SPECTROPHOTOMETRY OF NIOBIUM IV
下载PDF
Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors
2
作者 Xiang-Mi Zhan Mei-Lan Ha +7 位作者 Quan Wang Wei Li Hong-Ling Xiao Chun Feng Li-Juan Jiang Cui-Mei Wang Xiao-Liang Wang Zhan-Guo Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期75-78,共4页
Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for... Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. 展开更多
关键词 GAN In highly sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors
下载PDF
Highly Sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet
3
作者 Wenbo FEI (Department of Physics, Northeastern Universitys Shenyang 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期205-206,共2页
The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber link... The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulatein the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto-optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 pT/√Hz and a 3 dB bandwidth of ~10 MHz. 展开更多
关键词 YIG highly sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet
下载PDF
The Influence of Regular Hemodialysis on the Highly Sensitive Troponin-I Level in Children without Any Symptoms
4
作者 Hekmat Mohamed Maha Youssef +1 位作者 Manal Abdel-Salam Shayma A. Mohammed 《Open Journal of Nephrology》 2021年第2期183-198,共16页
<strong>Backgrounds:</strong> Cardiovascular diseases are still the prominent cause of death in cases of end-stage renal disease, cardiac troponin I (cTnI) can be used for detecting cardiac involvement in ... <strong>Backgrounds:</strong> Cardiovascular diseases are still the prominent cause of death in cases of end-stage renal disease, cardiac troponin I (cTnI) can be used for detecting cardiac involvement in asymptomatic cases of end-stage renal disease on hemodialysis. <strong>Aim:</strong> Determine the direct cardiac consequence of dialysis treatments in children on hemodialysis by measuring high-sensitive troponin-I as a marker of myocardial injury. <strong>Subjects and Methods:</strong> This case-control study included thirty children with end-stage renal disease on regular hemodialysis;the study group was selected from the nephrology hemodialysis unit of Al-Zahraa Hospital, Al-Azhar University. Another group of thirty healthy children matches age and sex with the patient’s group as a control. Highly Sensitive cTnI (hsTnI) was measured pre and post hemodialysis with a sensitive assay;moreover, ECG, lipid profile including cholesterol, triglyceride, low and high-density lipoprotein (HDL) in the same line with routine investigations for those patients, we used bioimpedance for dry weight assessment in the hemodialysis (HD) group. <strong>Results:</strong> Children on (HD) have a significantly higher (hsTnI) pre-dialysis (0.250 ± 0.069 ng/ml) compared to post-dialysis (0.187 ± 0.004 ng/ml) with (p, 0.001). With no significant difference between post HD (0.187 ± 0.004 ng/ml) and the control group (0.189 ± 0.005) with (p, 0.090). cTnI is detected in (73.3%) of children pre-dialysis above the cut-off value compared to (3.31%) had a high-level post-dialysis. cTnI is positively correlated with systolic, diastolic blood pressure and heart rate with (r. 0.333, p, 0.001: r. 0.343, p, 0.001: r. 0.276, p, 0.033) respectively and (hsTnI) is negatively correlated with Hb and HDL (r. -0.333, p, 0.009: r. 0.324, p, 0.011). Meanwhile (hsTnI) is positively correlated with serum urea, creatinine, ph, PTH, serum ferritin and positively correlated with QT interval and QTC. <strong>Conclusion:</strong> cTnI levels rise significantly before hemodialysis, so those patients are exposed to silent myocardial injury pre HD, and fortunately, it is not persistent after hemodialysis except for a few of them had a high level. We strongly advised not to delay dialysis appointments;the nephrology team should aggressively treat those patients to prevent further myocardial damage. 展开更多
关键词 highly sensitive Troponin-I CHILDREN HEMODIALYSIS
下载PDF
HIGHLY SENSITIVE SPECTROPHOTOMETRY OF NIOBIUM
5
作者 Zong Ming LUO (Department of Chemical Engineering,Guangdong Institute of Technology,Guangzhou,510090) 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期229-230,共2页
In pH2.0-3.0,niobium(V)forms molybdonlobic acid with sodium molybdate.A spectrophotometric method has been developed for the deter- mination of niobium based on the formation of ion-associate compound of molybdoniobat... In pH2.0-3.0,niobium(V)forms molybdonlobic acid with sodium molybdate.A spectrophotometric method has been developed for the deter- mination of niobium based on the formation of ion-associate compound of molybdoniobate with Butyl Rhodamine B in aqueous solution in the presence of polyvinyl alcohol and 0.4-0.7 mol/L H_2SO_4.The maximum absorption of ion-associate compound exhioits at 85 nm and the molar absorptivity is 7.5×1.0~5 L.mol^(-1).cm^(-1)for niobium.The new method has been applied to the determination of microamounts niobium in silicate rock,when niobium content is at the level of 8×10^(-3)%,with the relative standard deviation of about 3%. 展开更多
关键词 highly sensitive SPECTROPHOTOMETRY OF NIOBIUM
下载PDF
Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback 被引量:3
6
作者 向星烨 王葵如 +3 位作者 苑金辉 晋博源 桑新柱 余重秀 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期284-288,共5页
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se... We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case. 展开更多
关键词 optical sensor microring resonator high sensitivity large measurement range
下载PDF
Highly sensitive and stretchable piezoelectric strain sensor enabled wearable devices for real-time monitoring of respiratory and heartbeat simultaneously 被引量:2
7
作者 Zhenjie Ji Menglun Zhang 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第1期12-23,共12页
The World Health Organization has declared COVID-19 a pandemic.The demand for devices or systems to diagnose and track COVID-19 infections noninvasively not only in hospitals but also in home settings has led to incre... The World Health Organization has declared COVID-19 a pandemic.The demand for devices or systems to diagnose and track COVID-19 infections noninvasively not only in hospitals but also in home settings has led to increased interest in consumer-grade wearables.A common symptom of COVID-19 is dyspnea,which may manifest as an increase in respiratory and heart rates.In this paper,a novel piezoelectric strain sensor is presented for real-time monitoring of respiratory and heartbeat signals.A highly sensitive and stretchable piezoelectric strain sensor is fabricated using a piezoelectric film with a serpentine layout.The thickness of the patterned PVDF flexible piezoelectric strain sensor is only 168μm,and the voltage sensitivity reaches 0.97 mV/με.The effective modulus is 13.5 MPa,which allows the device to fit to the skin and detect the small strain exhibited by the human body.Chest vibrations are captured by the piezoelectric sensor,which produces an electrical output voltage signal conformally mapped with respiratory–cardiac activities.The separate heart activity and respiratory signals are extracted from the mixed respiratory–cardiac signal by an empirical mode decomposition data processing algorithm.By detecting vital signals such as respiratory and heart rates,the proposed device can aid early diagnosis and monitoring of respiratory diseases such as COVID-19. 展开更多
关键词 Physiological signal Strain sensor High sensitivity FLEXIBILITY Early diagnosis COVID-19
下载PDF
Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core 被引量:1
8
作者 Jianying Jing Kun Liu +3 位作者 Junfeng Jiang Tianhua Xu Shuang Wang Tiegen Liu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第6期38-51,共14页
A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achi... A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation. 展开更多
关键词 fiber photonics sensor customized plasmonic resonance curve nano-modified fiber core tip hot spot effect high sensitivity and stability
下载PDF
Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
9
作者 Xu Cheng Xu Zhou +6 位作者 Chen Huang Can Liu Chaojie Ma Hao Hong Wentao Yu Kaihui Liu Zhongfan Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期136-140,共5页
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry,medical treatment,ocean dynamics to aerospace.Recently,graphene optical fiber temperature sensors attr... Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry,medical treatment,ocean dynamics to aerospace.Recently,graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability.However,these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics,due to the unsuitable Fermi level of graphene and the destruction of fiber structure,respectively.Here,we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber(Gr-PCF)with the non-destructive integration of graphene into the holes of PCF.This hybrid structure promises the intact fiber structure and transmission mode,which efficiently enhances the temperature detection ability of graphene.From our simulation,we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to~3.34×10^(-3) dB/(cm·℃)when the graphene Fermi level is~35 meV higher than half the incident photon energy.Additionally,this sensitivity can be further improved by~10 times through optimizing the PCF structure(such as the fiber hole diameter)to enhance the light–matter interaction.Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices. 展开更多
关键词 GRAPHENE photonic crystal fiber temperature sensor high sensitivity Fermi level
下载PDF
A Photonic Crystal Fiber Based Asymmetric Slotted Structured Highly Sensitive Refractive Index Plasmonic Biosensor
10
作者 Md. Arafat Rahman Tanvir Ahmed +1 位作者 Md. Ismail Haque Md. Shamim Anower 《Journal of Sensor Technology》 2022年第1期1-17,共17页
Surface plasmon resonance (SPR) sensors have grown in popularity owing to their sensitivity, precision, and capacity for a variety of applications, including detection, monitoring, and sensing, among others. Sensitivi... Surface plasmon resonance (SPR) sensors have grown in popularity owing to their sensitivity, precision, and capacity for a variety of applications, including detection, monitoring, and sensing, among others. Sensitivity and resolution are two areas where this technology has room for development. A plasmonic biosensor based on an asymmetric slotted PCF structure with extremely high sensitivity has been described and theoretically investigated. This high performance sensor is constructed and completely characterized using finite element method in COMSOL Multiphysics software environment. Sensitivity and resolution are analyzed as performance parameters for the proposed sensor. Numerical simulation exhibits the maximum wavelength-sensitivity of 1100 nm/RIU with 9.09 × 10<sup>-6</sup> RIU resolution in the broad measurement range of refractive index from 1.30 to 1.44. A polarization controller can be used to fine-tune this extremely sensitive and wide-ranging refractive index sensor to fulfil a variety of practical needs. This is performed with the consideration of the variation in the refractive index (RI) of the analyte channels. In comparison with earlier PCF-based sensors, the fiber design structure is basic, symmetrical, simple to produce, and cost-effective. Because of the asymmetric air holes and higher sensitivities of the refractive index detector, it is possible to identify biomolecules, biochemicals and other analytes. 展开更多
关键词 Surface Plasmon Resonance (SPR) Sensor High Sensitivity Photonic Crystal Fiber (PCF) Optical Fiber Sensor
下载PDF
Waterproof Iontronic Yarn for Highly Sensitive Biomechanical Strain Monitoring in Wearable Electronics
11
作者 Zhiping Feng Qiang He +5 位作者 Xue Wang Jing Qiu Hongbing Wu Yinggang Lin Yufen Wu Jin Yang 《Advanced Fiber Materials》 SCIE EI CAS 2024年第3期925-935,共11页
Flexible yarn sensors designed for integration into textiles have the potential to revolutionize wearable technology by continuously monitoring biomechanical strain.However,existing yarn-shaped sensors rely on capacit... Flexible yarn sensors designed for integration into textiles have the potential to revolutionize wearable technology by continuously monitoring biomechanical strain.However,existing yarn-shaped sensors rely on capacitance as a strain-dependent electrical signal and often face limitations in achieving high sensitivity,especially across a broad strain range.Here,we propose a waterproof all-in-one capacitive yarn sensor(ACYS)that is tailored to monitor a wide range of biophysical strains.Owing to the coaxial helical electrode and the ionic liquid-doped dielectric layer,the ACYS demonstrates remarkable stretchability,ultrahigh capacitance variation,and an outstanding gauge factor of 6.46 at 140%strain.With exceptional mechanical durability based on enduring 3300 stretching cycles and favorable resistance to sweat erosion,this 1D structure can be seamlessly integrated into textiles,making it ideal for use in wearable electronics.Demonstrating its application versatility,the ACYS accurately measures biomechanical strain in joint movements,facial expressions,and physiological assessments,making it a promising advancement in wearable technology. 展开更多
关键词 Iontronic yarn Capacitive strain sensor High sensitivity Biomechanical strain
原文传递
A multiple flame-retardant,early fire-warning,and highly sensitive thread-shaped all-fabric-based piezoresistive sensor
12
作者 LI WeiBiao ZHANG Shuai +5 位作者 MA ShuQi WANG JiaCheng WANG Huan YANG QiRong SONG YongTao ZHU Jie 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1151-1159,共9页
In the artificial intelligence age,multifunctional and intelligent fireproof fabric-based electronics are urgently needed.Herein,a novel thread-shaped all-fabric-based piezoresistive sensor(denoted as TAFPS)with prope... In the artificial intelligence age,multifunctional and intelligent fireproof fabric-based electronics are urgently needed.Herein,a novel thread-shaped all-fabric-based piezoresistive sensor(denoted as TAFPS)with properties such as flame retardancy,firewarning,and piezoresistivity is proposed,which is composed of an inner nickel-plated fabric electrode,a multifunctional double helix fabric,and an external flame-retardant encapsulation fabric.Owing to the multiple flame-retardant properties of glass fiber tubular fabric,aminated carbon nanotubes(ACNTs),and ammonium polyphosphate,the char residue of the TAFPS reaches40.3 wt%at 800℃.In addition,the heat-sensitive effect of ACNTs during combustion causes a rapid decrease in the TAFPS resistance,triggering the fire alarm system within 2 s.Additionally,benefiting from the force-sensitive behavior of the double helix layer and tightly wrapped pattern of the external heat-shrinkable tubular fabric,TAFPS demonstrated a high sensitivity of4.40 kPa^(-1)(0–5.81 k Pa)and good stability for 10000 s.Considering its excellent flame resistance,high sensitivity,and agreeable stability,the developed TAFPS can be integrated into fire suits to monitor the exercise training process and the external fire environment.This work offers a novel approach for fabricating all-fabric-based piezoresistive sensors in the future for fire prevention and fire alarms,with promising applications in fire protection,the Internet of Things,and smart apparel. 展开更多
关键词 all-fabric piezoresistive sensor multiple flame retardancy agile fire-warning high sensitivity
原文传递
Highly sensitive Fe^(3+)luminescence detection via single-ion adsorption
13
作者 Yujing Li Xiaojun Zhang +2 位作者 Zicheng Wang Lina Zhao Yuxin Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期431-434,共4页
To achieve a lower detection limit has always been a goal of analytical chemists.Herein,we demonstrate the first picomolar level detection capability for Fe3+ion via luminescence detection technology.The results of st... To achieve a lower detection limit has always been a goal of analytical chemists.Herein,we demonstrate the first picomolar level detection capability for Fe3+ion via luminescence detection technology.The results of structural analysis and theoretical calculation show that Fe3+ions are adsorbed on the central node of Eu-DBM(DBM=dibenzoylmethane)sensor in the form of single ion at ultralow concentration.Subsequently,the pathways of photo-induced charge and energy transfer of the obtained Eu-DBM@Fe^(3+)material have been changed,from the initial DBM-to-Eu^(3+)before Fe^(3+)adsorption to the ultimate DBM-to-Fe^(3+)after adsorption process,which quenches the luminescence of Eu3+ion.This work not only obtains the highly sensitive luminescence detection ability,but also innovatively proposes the single-ion adsorption mechanism,both of which have important scientific and application values for the development of more efficient detection agents in the future. 展开更多
关键词 Luminescence detection Lanthanide complex High sensitivity Fe^(3+)ion Single-ion adsorption
原文传递
Highly sensitive glucose sensor based on hierarchical CuO 被引量:3
14
作者 CHEN Fang SHAO Bo +1 位作者 ZHAI Wei MA XiaoYan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期65-70,共6页
The fabrication of high performance CuO based glucose sensors remains a great challenge due to the "trade-off effect" between sensitivity and linear range. In this study, a hierarchical CuO nanostructure wit... The fabrication of high performance CuO based glucose sensors remains a great challenge due to the "trade-off effect" between sensitivity and linear range. In this study, a hierarchical CuO nanostructure with a great number of firecracker-shaped nanorods along the ligament and three-dimensional interconnected nanoporous is obtained by dealloying and post oxidation process of Al-33.3 wt% Cu eutectic alloy ribbons. Because of the precise structural design, not only the number of active sites for glucose electro-oxidation is significantly increased but also the glucose diffusion under high concentration is greatly accelerated, leading to a high sensitivity of 1.18 mA cm^(-2) mM^(-1) and a wider linear range up to 5.53 mM for glucose detection. This work provides a potential approach to design hierarchical nanostructure for other metal oxides with desirable properties for electrocatalytic applications. 展开更多
关键词 hierarchical CuO nanostructure DEALLOYING glucose sensor highly sensitive
原文传递
Highly sensitive H_(2)O_(2)-scavenging nano-bionic system for precise treatment of atherosclerosis 被引量:2
15
作者 Xiaoyu Liang Huiyang Li +10 位作者 Xuanling Li Xinxin Tian Aiai Zhang Qingzhi Luo Jianwei Duan Youlu Chen Liyun Pang Chen Li Xing-Jie Liang Yong Zeng Jing Yang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第1期372-389,共18页
In atherosclerosis,chronic inflammatory processes in local diseased areas may lead to the accumulation of reactive oxygen species(ROS).In this study,we devised a highly sensitive H_(2)O_(2)-scavenging nanobionic syste... In atherosclerosis,chronic inflammatory processes in local diseased areas may lead to the accumulation of reactive oxygen species(ROS).In this study,we devised a highly sensitive H_(2)O_(2)-scavenging nanobionic system loaded with probucol(RPP-PU),to treat atherosclerosis more effectively.The RPP material had high sensitivity to H_(2)O_(2),and the response sensitivity could be reduced from 40 to 10μmol/L which was close to the lowest concentration of H_(2)O_(2)levels of the pathological environment.RPP-PU delayed the release and prolonged the duration of PU in vivo.In Apolipoprotein E deficient(ApoE-/-)mice,RPP-PU effectively eliminated pathological ROS,reduced the level of lipids and related metabolic enzymes,and significantly decreased the area of vascular plaques and fibers.Our study demonstrated that the H_(2)O_(2)-scavenging nanobionic system could scavenge the abundant ROS in the atherosclerosis lesion,thereby reducing the oxidative stress for treating atherosclerosis and thus achieve the therapeutic goals with atherosclerosis more desirably. 展开更多
关键词 highly sensitive H_(2)O_(2)-scavenging Nano-bionic system ATHEROSCLEROSIS Oxidative stress PRECISE Target Pathological environment
原文传递
Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations 被引量:1
16
作者 Lili Wang Ruiqing Chai +1 位作者 Zheng Lou Guozhen Shen 《Nano Research》 SCIE EI CAS CSCD 2018年第2期1029-1037,共9页
Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced ... Chemical sensors (CSs) are an emerging area in nanoscience research, which focuses on the highly sensitive detection of toxic and hazardous gases and disease- related volatile organics. While the field has advanced rapidly in recent years, it lacks the theoretical support required for the rational design of innovative materials with tunable measurement responses. Herein, we present a one-dimensional (1D) hybrid nanofiber decorated with ultrafine NiO nanoparticles (NiO NPs) as an efficient active component for CSs. Highly dispersed (110)-facet NiO NPs with a high percentage of Ni2~ active sites with unsaturated coordination were confined in a TiO2 nanofiber (TiO2 NF) matrix that is favorable for surface catalytic reactions. The CSs constructed using the 1D heterostructure NiO/TiO2 nanofibers (NiOdrio2 HNFs) exhibited a highly selective response to trace CO gas molecules (1 ppm) with high sensitivity (AR/Ro = 1.02), ultrafast response/ recovery time (T 〈 20 s), and remarkable reproducibility at room tem- perature. The density functional theory (DFT) simulations and experimental results confirmed that the selective response could be attributed to the high molecular adsorption energy of the NiO nanoparticles with (110) facets and abundant interfaces, which act synergistically to promote CO adsorption and facilitate charge transfer. 展开更多
关键词 hybrid nanofiber high active facet gas sensor SELECTIVITY highly sensitive density functional theory
原文传递
Highly sensitive detection of NT-proBNP by molecular motor 被引量:1
17
作者 Jie Zhang Yao-Gen Shu 《Genes & Diseases》 SCIE 2017年第1期37-40,共4页
FoF1-ATPase is an active rotary motor,and generates three-ATP for each rotation.At saturated substrate concentration,the motor can achieve about 103 r.p.m,which means one motor can generate about 105 ATP molecules dur... FoF1-ATPase is an active rotary motor,and generates three-ATP for each rotation.At saturated substrate concentration,the motor can achieve about 103 r.p.m,which means one motor can generate about 105 ATP molecules during 30 min.Here,we constituted a novel nanodevice with a molecular rotary motor and a“battery”,FoF1-ATPase and chromatophore,and presented a novel method of sandwich type rotary biosensor based on εsubunit with one target-to-one motor,in which one target corresponds 105 ATP molecules as detection signals during 30 min.The target such as NT-proBNP detection demonstrated that this novel nanodevice has potential to be developed into an ultrasensitive biosensor to detect low expressed targets. 展开更多
关键词 Active nanodevice FoF1-ATPase highly sensitive detection Molecular motor NT-PROBNP
原文传递
A NEW EXPERIMENTAL AND CLINICAL APPROACH OF COMBINING USAGE OF HIGHLY ACTIVE TUMOR-INFILTRATING LYMPHOCYTES AND HIGHLY SENSITIVE ANTITUMOR DRUGS FOR THE ADVANCED MALIGNANT TUMOR
18
作者 李彪如 童善庆 +3 位作者 张希衡 陆静 顾琴龙 陆德源 《Chinese Medical Journal》 SCIE CAS CSCD 1994年第11期5-9,共5页
In recent years, tumor-nfiltrating lymphocytes (TILs) have been reported to be effective for tumors in experimental and clinical research. In order to increase the therapeutical effect, we modified some steps of Rosen... In recent years, tumor-nfiltrating lymphocytes (TILs) have been reported to be effective for tumors in experimental and clinical research. In order to increase the therapeutical effect, we modified some steps of Rosenberg's approach a. cold digestion with collagenase at 4C for 24 hours; b. sedimentation instead of centrifugation; c. elimination of tumor cells before the cultivation procedure. Compared with the original approach, the proliferation, activity and cytotoxicity of TILs obtained by the modified procedure were much improved. TILs' expansion-old was greater than that with the original approach. Cytotoxicity against rumor cells was more potent. Increased TILs' subsets were CD3 and CD8 cells. Meanwhile, we took tumor cells from tumor tissues to test their in vitro chemosensitivities to different drugs in order to select highly sensitive antitumor drugs for treatment of cases with advanced tumors. According to the design of using highly active TILs and highly sensitive drugs (H & H therapy), preliminary clinical results of 50 cases showed higher response rates than those in treatment with TIL / IL2, LAK / 1L2 and TIL+IL2+CTX. Less toxic side effects were observed in 14 patients. 展开更多
关键词 TIL A NEW EXPERIMENTAL AND CLINICAL APPROACH OF COMBINING USAGE OF highly ACTIVE TUMOR-INFILTRATING LYMPHOCYTES AND highly sensitive ANTITUMOR DRUGS FOR THE ADVANCED MALIGNANT TUMOR In HLA test
原文传递
Detection of low-concentration EGFR with a highly sensitive optofluidic resonator
19
作者 Jianfeng Shang Hailang Dai +1 位作者 Yun Zou Xianfeng Chen 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期90-93,共4页
A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can b... A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor(EGFR)concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index(RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5 × 10^(-3). 展开更多
关键词 Detection of low-concentration EGFR with a highly sensitive optofluidic resonator
原文传递
Synergistic piezoelectricity enhanced BaTiO_(3)/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications 被引量:10
20
作者 Junbin Yu Shuai Xian +7 位作者 Zhenpeng Zhang Xiaojuan Hou Jian He Jiliang Mu Wenping Geng Xiaojun Qiao Le Zhang Xiujian Chou 《Nano Research》 SCIE EI CSCD 2023年第4期5490-5502,共13页
Designing stretchable and skin-conformal self-powered sensors for intelligent sensing and posture recognition is challenging.Here,based on a multi-force mixing and vulcanization process,as well as synergistically piez... Designing stretchable and skin-conformal self-powered sensors for intelligent sensing and posture recognition is challenging.Here,based on a multi-force mixing and vulcanization process,as well as synergistically piezoelectricity of BaTiO_(3)and polyacrylonitrile,an all-in-one,stretchable,and self-powered elastomer-based piezo-pressure sensor(ASPS)with high sensitivity is reported.The ASPS presents excellent sensitivity(0.93 V/104 Pa of voltage and 4.92 nA/104 Pa of current at a pressure of 10-200 kPa)and high durability(over 10,000 cycles).Moreover,the ASPS exhibits a wide measurement range,good linearity,rapid response time,and stable frequency response.All components were fabricated using silicone,affording satisfactory skinconformality for sensing postures.Through cooperation with a homemade circuit and artificial intelligence algorithm,an information processing strategy was proposed to realize intelligent sensing and recognition.The home-made circuit achieves the acquisition and wireless transmission of ASPS signals(transmission distance up to 50 m),and the algorithm realizes the classification and identification of ASPS signals(accuracy up to 99.5%).This study proposes not only a novel fabrication method for developing self-powered sensors,but also a new information processing strategy for intelligent sensing and recognition,which offers significant application potential in human-machine interaction,physiological analysis,and medical research. 展开更多
关键词 flexible pressure sensor synergistic piezoelectricity all-in-one structure high sensitivity intelligent sensing and recognition
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部