Enantioseparation of aminoglutethimide was performed by high-speed counter-current chromatography with a two-phase system composed of ethyl acetate: methanol: water = 10: 1: 9. The lower phase contained 20 mmol/L ...Enantioseparation of aminoglutethimide was performed by high-speed counter-current chromatography with a two-phase system composed of ethyl acetate: methanol: water = 10: 1: 9. The lower phase contained 20 mmol/L of carboxymethly-β-cyclodextrin as chiral selector. The enantiomers were separated in 1.2 h and identified by chiral HPLC. This method was very efficient for the chiral preparative separation.展开更多
The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concent...The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concentration of hydroxypropyl-β-cyclodextrin(HP-β-CD),percentage of organic modifier,pH value and column temperature on enantioselective separation were investigated.The quantification property of the developed RP-HPLC method was examined.The chiral recognition mechanism of PSA was also discussed.The results show that a baseline separation of PSA enantiomers is achieved on a Lichrospher C18 column(4.6 mm(inner diameter)×250 mm,5μm)with HP-β-CD as chiral mobile phase additive.The capacity factors of R-PSA and S-PSA are 3.94 and 4.80,respectively.The separation factor and resolution are respectively 1.22 and 8.03.The mobile phase is a mixture of acetonitrile and deionized water(20-80,volume ratio)containing 10 mmol/L HP-β-CD and 0.05% trifluoroacetic acid(pH 2.5,adjusted with triethylamine)with a flow rate of 1.0 mL/min.The ultraviolet(UV)detector is set at 254 nm.The likely roles are inclusion interaction,induction and hydrogen bonding between HP-β-CD and PSA enantiomers.展开更多
A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurity by capillary electrophoresis with highly sulfated β-cyclodextrin (HS-β-CD) as the chiral selector is ...A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurity by capillary electrophoresis with highly sulfated β-cyclodextrin (HS-β-CD) as the chiral selector is described. In general, enantioseparation of basic chiral compounds is carried out in acidic condition (pH 2.5) to prevent analytes from adsorption on the capillary wall. However, in the case of rivastigmine, the detection sensitivity was too limited to determine the optical impurity of S-rivastigmine lower than 1% when buffer pH was 2.5. It was found that the detection sensitivity was improved 1.6 times just by raising the buffer pH value from 2.5 to 5.8. The poor column efficiency due to the adsorption of the analytes on the capillary wall was resolved by using dynamical coating of the capillary wall with the linear polyacrylamide solution. The experimental parameters such as the concentration of HS-β-CD, buffer pH and buffer ionic strength were optimized, respectively. The method was validated in terms of repeatability, linearity, limit of detection (LOD) and limit of quantitation (LOQ). Using the present method, the optical purity of nonracemic rivastigmine with the enantiomeric excess (ee) value of 99.14% was determined.展开更多
基金The work is supported by National Natural Science Foundation of China (No. 30160092) TRAP0YT and Yunnan Province's Natural Science Foundation.
文摘Enantioseparation of aminoglutethimide was performed by high-speed counter-current chromatography with a two-phase system composed of ethyl acetate: methanol: water = 10: 1: 9. The lower phase contained 20 mmol/L of carboxymethly-β-cyclodextrin as chiral selector. The enantiomers were separated in 1.2 h and identified by chiral HPLC. This method was very efficient for the chiral preparative separation.
基金Project(20776038)supported by the National Natural Science Foundation of China
文摘The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concentration of hydroxypropyl-β-cyclodextrin(HP-β-CD),percentage of organic modifier,pH value and column temperature on enantioselective separation were investigated.The quantification property of the developed RP-HPLC method was examined.The chiral recognition mechanism of PSA was also discussed.The results show that a baseline separation of PSA enantiomers is achieved on a Lichrospher C18 column(4.6 mm(inner diameter)×250 mm,5μm)with HP-β-CD as chiral mobile phase additive.The capacity factors of R-PSA and S-PSA are 3.94 and 4.80,respectively.The separation factor and resolution are respectively 1.22 and 8.03.The mobile phase is a mixture of acetonitrile and deionized water(20-80,volume ratio)containing 10 mmol/L HP-β-CD and 0.05% trifluoroacetic acid(pH 2.5,adjusted with triethylamine)with a flow rate of 1.0 mL/min.The ultraviolet(UV)detector is set at 254 nm.The likely roles are inclusion interaction,induction and hydrogen bonding between HP-β-CD and PSA enantiomers.
文摘A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurity by capillary electrophoresis with highly sulfated β-cyclodextrin (HS-β-CD) as the chiral selector is described. In general, enantioseparation of basic chiral compounds is carried out in acidic condition (pH 2.5) to prevent analytes from adsorption on the capillary wall. However, in the case of rivastigmine, the detection sensitivity was too limited to determine the optical impurity of S-rivastigmine lower than 1% when buffer pH was 2.5. It was found that the detection sensitivity was improved 1.6 times just by raising the buffer pH value from 2.5 to 5.8. The poor column efficiency due to the adsorption of the analytes on the capillary wall was resolved by using dynamical coating of the capillary wall with the linear polyacrylamide solution. The experimental parameters such as the concentration of HS-β-CD, buffer pH and buffer ionic strength were optimized, respectively. The method was validated in terms of repeatability, linearity, limit of detection (LOD) and limit of quantitation (LOQ). Using the present method, the optical purity of nonracemic rivastigmine with the enantiomeric excess (ee) value of 99.14% was determined.