In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources ...In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.展开更多
Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it i...Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure facies belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currenffy discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies- potential index FPI〉0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon- bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone.展开更多
基金supported by the National Basic Research Program in China (2006CB202300)
文摘In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.
基金funded by the China 973 Key Foundation Research Development Project(Grant No. 2001CB209108)China National Natural Science Foundation Program(Grant No.40802029)
文摘Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure facies belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currenffy discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies- potential index FPI〉0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon- bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone.