Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as...Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.展开更多
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel...Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.展开更多
Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution o...Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution of lithium,which is difficult to map in the presence of magnesium.In this work,a ratio spectrum-imaging method with electron energy-loss spectroscopy(EELS)is demonstrated,which enables the mapping of lithium.In application to LAZ941(Mg-9Li-4Al-1Zn in wt.%),this technique revealed that a key precipitate in the microstructure,previously thought by some to be Mg_(17)Al_(12),is in fact rich in lithium.This result was corroborated with a structural investigation by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),showing this phase to be Al_(1-x)Zn_(x)Li,with x<<1.This work indicates the potential offered by this technique for mapping lithium in materials.展开更多
Enabled by the advances in aberration-corrected scanning transmission electron microscopy(STEM),atomic-resolution real space imaging of materials has allowed a direct structure-property investigation.Traditional ways ...Enabled by the advances in aberration-corrected scanning transmission electron microscopy(STEM),atomic-resolution real space imaging of materials has allowed a direct structure-property investigation.Traditional ways of quantitative data analysis suffer from low yield and poor accuracy.New ideas in the field of computer vision and machine learning have provided more momentum to harness the wealth of big data and sophisticated information in STEM data analytics,which has transformed STEM from a localized characterization technique to a macroscopic tool with intelligence.In this review article,we discuss the prime significance of defect topology and density in two-dimensional(2D)materials,which have proved to be a powerful means to tune a wide range of properties.Subsequently,we systematically review advanced data analysis methods that have demonstrated promising prospects in analyzing STEM data,particularly for identifying structural defects,with high throughput and veracity.A unified framework for atomic structure identification is also summarized.展开更多
The recent developments of electron tomography(ET) based on transmission electron microscopy(TEM) and scanning transmission electron microscopy(STEM) in the field of materials science were introduced. The variou...The recent developments of electron tomography(ET) based on transmission electron microscopy(TEM) and scanning transmission electron microscopy(STEM) in the field of materials science were introduced. The various types of ET based on TEM as well as STEM were described in detail, which included bright-field(BF)-TEM tomography, dark-field(DF)-TEM tomography, weak-beam dark-field(WBDF)-TEM tomography, annular dark-field(ADF)-TEM tomography, energy-filtered transmission electron microscopy(EFTEM) tomography, high-angle annular dark-field(HAADF)-STEM tomography, ADF-STEM tomography, incoherent bright field(IBF)-STEM tomography, electron energy loss spectroscopy(EELS)-STEM tomography and X-ray energy dispersive spectrometry(XEDS)-STEM tomography, and so on. The optimized tilt series such as dual-axis tilt tomography, on-axis tilt tomography, conical tilt tomography and equally-sloped tomography(EST) were reported. The advanced reconstruction algorithms, such as discrete algebraic reconstruction technique(DART), compressed sensing(CS) algorithm and EST were overviewed. At last, the development tendency of ET in materials science was presented.展开更多
BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. M...BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. METHODS: Thirty-five bile samples and 30 stones specimens were cultured for bacteria and 12 stones specimens were examined with a scan electron microscope (SEM) or a transmission electron microscope (TEM). RESULT: 94.2% bile samples and 96.7% stones specimens were positive in bacteria culture. Bacteria were found in stones under SEM and TEM. CONCLUSION: Bacteria in stones are associated with the infection of the biliary tract.展开更多
Complex oxide interfaces have been one of the central focuses in condensed matter physics and ma-terial science.Over the past decade,aberration corrected scanning transmission electron microscopy and spectroscopy has ...Complex oxide interfaces have been one of the central focuses in condensed matter physics and ma-terial science.Over the past decade,aberration corrected scanning transmission electron microscopy and spectroscopy has proven to be invaluable to visualize and understand the emerging quantum phenomena at an interface.In this paper,we briefly review some recent progress in the utilization of electron microscopy to probe interfaces.Specifically,we discuss several important challenges for electron microscopy to advance our understanding on interface phenomena,from the perspective of variable temperature,magnetism,electron energy loss spectroscopy analysis,electronic symmetry,and defects probing.展开更多
Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat...Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2 D materials through aberration corrected low voltage scanning transmission electron microscopy(LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2 D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.展开更多
The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron m...The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.展开更多
Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also be...Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science.展开更多
Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some int...Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some interesting structural features were found inside and outside of the melanosomes. By SEM observation, the melanosomes were ellipsoid shape, their surface was not smooth and was covered with rough substructure, 10 to 20 nm particles. By TEM, uneven structure and micro particles were observed in the melanosomes. Furthermore, three-dimensional analysis was tried by using the ultra-high voltage electron microscopy(UHVEM). Micrographs of the melanosomes were taken at various tilted angles by UHVEM, after preparing 500 nm thickness specimens stained with lead citrate. From the micrographs collected, the three-dimensional structures were reconstructed by using i-mode software. Melanin stained by lead and non stained parts was clearly observed in the reconstructed structure. Non stained parts were round, regular size, and distributed widely in the melanosomes.展开更多
This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The pr...This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms;it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus.展开更多
Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast pr...Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.展开更多
Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various...Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.展开更多
The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly charac...The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.展开更多
The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense inte...The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.展开更多
In this study,the mechanical behavior of crystal group of hexagonal close-packed(hcp;αphase)and body-centered cubic(bcc;βphase)during tensile loading was investigated to elucidate the mechanism from elastic to plast...In this study,the mechanical behavior of crystal group of hexagonal close-packed(hcp;αphase)and body-centered cubic(bcc;βphase)during tensile loading was investigated to elucidate the mechanism from elastic to plastic deformation transition of the rolled LZ91 Mg alloy using transmission-X-ray diffraction(transmission-XRD)measurement,transmission electron microscopy(TEM),scanning transmission electron microscopy(STEM),energy dispersive X-ray spectroscopy(EDS).The approximate proof stress of the LZ91 Mg alloy sample was found that the lattice strain retained the expanded state from 0.6%nominal strain,and the transmission-XRD measurement characterized the crystalline behavior during the transition by the integrated intensity of crystal group hcp(100).The lattice strain of bcc(110)decreased from the 0.6%nominal strain due to dislocation activity,which occurred nearβ/βgrain boundary.In addition,we performed the analyses of electron energy loss spectroscopy(EELS)modes,the Li-K peak disappeared from the segregated Li regions of 10–60 nm nearβ/βgrain boundary at the nominal strain of 0.8%.Understanding this mechanical behavior during the elastic to plastic deformation transition by transmission-XRD is crucial for the development of Mg-Li alloys.展开更多
The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure ...The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regionssuch as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how tosynthesize new materials with improved properties. Some recent advances and possible future directions are discussed.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
基金the Engineering and Physical Science Research Council(EPSRC),U.K.for the award of a research grant EP/J0118058/1 and postdoctoral research assistantships(PDRAs) to M.R.W.and R.W.M.from the grant。
文摘Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.
基金the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)the National Natural Science Fund for Innovative Research Groups of China (51621003)the National Natural Science Foundation of China (12074017)。
文摘Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.
基金the Australian Research Council (ARC) for funding this work[Grant no.DP190103592]the use of instruments and scientific and technical assistance at the Monash Centre for Electron Microscopy,a Node of Microscopy Australiafunded by ARC grants LE110100223(F20),LE0454166(Titan)and LE170100118(Spectra-φ)。
文摘Magnesium-lithium alloys with high lithium content have been attracting significant attention because of their low density,high formability and corrosion resistance.These properties are dependent on the distribution of lithium,which is difficult to map in the presence of magnesium.In this work,a ratio spectrum-imaging method with electron energy-loss spectroscopy(EELS)is demonstrated,which enables the mapping of lithium.In application to LAZ941(Mg-9Li-4Al-1Zn in wt.%),this technique revealed that a key precipitate in the microstructure,previously thought by some to be Mg_(17)Al_(12),is in fact rich in lithium.This result was corroborated with a structural investigation by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),showing this phase to be Al_(1-x)Zn_(x)Li,with x<<1.This work indicates the potential offered by this technique for mapping lithium in materials.
基金Support by the Singapore Ministry of Education through a Tier 2 grant(MOE2017-T2-2-139)is gratefully acknowledged。
文摘Enabled by the advances in aberration-corrected scanning transmission electron microscopy(STEM),atomic-resolution real space imaging of materials has allowed a direct structure-property investigation.Traditional ways of quantitative data analysis suffer from low yield and poor accuracy.New ideas in the field of computer vision and machine learning have provided more momentum to harness the wealth of big data and sophisticated information in STEM data analytics,which has transformed STEM from a localized characterization technique to a macroscopic tool with intelligence.In this review article,we discuss the prime significance of defect topology and density in two-dimensional(2D)materials,which have proved to be a powerful means to tune a wide range of properties.Subsequently,we systematically review advanced data analysis methods that have demonstrated promising prospects in analyzing STEM data,particularly for identifying structural defects,with high throughput and veracity.A unified framework for atomic structure identification is also summarized.
基金Projects(51071125,51201135)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘The recent developments of electron tomography(ET) based on transmission electron microscopy(TEM) and scanning transmission electron microscopy(STEM) in the field of materials science were introduced. The various types of ET based on TEM as well as STEM were described in detail, which included bright-field(BF)-TEM tomography, dark-field(DF)-TEM tomography, weak-beam dark-field(WBDF)-TEM tomography, annular dark-field(ADF)-TEM tomography, energy-filtered transmission electron microscopy(EFTEM) tomography, high-angle annular dark-field(HAADF)-STEM tomography, ADF-STEM tomography, incoherent bright field(IBF)-STEM tomography, electron energy loss spectroscopy(EELS)-STEM tomography and X-ray energy dispersive spectrometry(XEDS)-STEM tomography, and so on. The optimized tilt series such as dual-axis tilt tomography, on-axis tilt tomography, conical tilt tomography and equally-sloped tomography(EST) were reported. The advanced reconstruction algorithms, such as discrete algebraic reconstruction technique(DART), compressed sensing(CS) algorithm and EST were overviewed. At last, the development tendency of ET in materials science was presented.
文摘BACKGROUND: Primary intrahepatic cholelithiasis is usually combined with biliary tract infection. This research was undertaken to investigate the relationship between intrahepatic stones and biliary tract infection. METHODS: Thirty-five bile samples and 30 stones specimens were cultured for bacteria and 12 stones specimens were examined with a scan electron microscope (SEM) or a transmission electron microscope (TEM). RESULT: 94.2% bile samples and 96.7% stones specimens were positive in bacteria culture. Bacteria were found in stones under SEM and TEM. CONCLUSION: Bacteria in stones are associated with the infection of the biliary tract.
基金supported by the US Department of Energy(DOE)under Grant No.DOE DE-SC0002136.Z.W.and Y.Z.acknowledge the support by the U.S.Department of Energy,Office of Basic Energy Science,Division of Materials Science and Engineering,under contract no.DESC0012704H.G.acknowledges the support by Shanghai Municipal Natural Science Foundation(No.19ZR1402800)Shanghai Municipal Natural Science Foundation(No.18JC1411400).
文摘Complex oxide interfaces have been one of the central focuses in condensed matter physics and ma-terial science.Over the past decade,aberration corrected scanning transmission electron microscopy and spectroscopy has proven to be invaluable to visualize and understand the emerging quantum phenomena at an interface.In this paper,we briefly review some recent progress in the utilization of electron microscopy to probe interfaces.Specifically,we discuss several important challenges for electron microscopy to advance our understanding on interface phenomena,from the perspective of variable temperature,magnetism,electron energy loss spectroscopy analysis,electronic symmetry,and defects probing.
基金the support from National Natural Science Foundation of China(No.11974156)Guangdong International Science Collaboration Project(No.2019A050510001)the assistance of SUSTech Core Research Facilities,especially technical support from Pico-Centre that receives support from Presidential fund and Development and Reform Commission of Shenzhen。
文摘Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2 D materials through aberration corrected low voltage scanning transmission electron microscopy(LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2 D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.
基金supported by the Kirikkale University Scientific Research Fund(Nos.2008/34 and 2008/35)
文摘The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.
文摘Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science.
文摘Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some interesting structural features were found inside and outside of the melanosomes. By SEM observation, the melanosomes were ellipsoid shape, their surface was not smooth and was covered with rough substructure, 10 to 20 nm particles. By TEM, uneven structure and micro particles were observed in the melanosomes. Furthermore, three-dimensional analysis was tried by using the ultra-high voltage electron microscopy(UHVEM). Micrographs of the melanosomes were taken at various tilted angles by UHVEM, after preparing 500 nm thickness specimens stained with lead citrate. From the micrographs collected, the three-dimensional structures were reconstructed by using i-mode software. Melanin stained by lead and non stained parts was clearly observed in the reconstructed structure. Non stained parts were round, regular size, and distributed widely in the melanosomes.
文摘This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms;it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus.
文摘Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.
文摘Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles.
文摘The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
基金the insightful discussions with Prof.Dongsheng Song.Project supported by the National Natural Science Foundation of China(Grant No.52172115)the Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province(Grant No.2021B1212040001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012434)Shenzhen Science and Technology Program(Grant No.20231121093057002)Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515010762).
文摘The discovery of nickelate superconductors,including doped infinite-layer(IL)nickelates RNiO2(R=La,Pr,Nd),layered square-planar nickelate Nd6Ni5O12,and the Ruddlesden–Popper(RP)phase La3Ni2O7,has spurred immense interest in fundamental research and potential applications.Scanning transmission electron microscopy(STEM)has proven crucial for understanding structure–property correlations in these diverse nickelate superconducting systems.In this review,we summarize the key findings from various modes of STEM,elucidating the mechanism of different nickelate superconductors.We also discuss future perspectives on emerging STEM techniques for unraveling the pairing mechanism in the“nickel age”of superconductivity.
基金supported by The SUHARA MEMORIAL FOUNDATION [grant number SF-2023-A1]JSPS KAKENHI [grant numbers JP16K05961 and JP19K04065]supported by Hokkaido University's microstructural characterization platform under a program of “Nanotechnology Platform,” within the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
文摘In this study,the mechanical behavior of crystal group of hexagonal close-packed(hcp;αphase)and body-centered cubic(bcc;βphase)during tensile loading was investigated to elucidate the mechanism from elastic to plastic deformation transition of the rolled LZ91 Mg alloy using transmission-X-ray diffraction(transmission-XRD)measurement,transmission electron microscopy(TEM),scanning transmission electron microscopy(STEM),energy dispersive X-ray spectroscopy(EDS).The approximate proof stress of the LZ91 Mg alloy sample was found that the lattice strain retained the expanded state from 0.6%nominal strain,and the transmission-XRD measurement characterized the crystalline behavior during the transition by the integrated intensity of crystal group hcp(100).The lattice strain of bcc(110)decreased from the 0.6%nominal strain due to dislocation activity,which occurred nearβ/βgrain boundary.In addition,we performed the analyses of electron energy loss spectroscopy(EELS)modes,the Li-K peak disappeared from the segregated Li regions of 10–60 nm nearβ/βgrain boundary at the nominal strain of 0.8%.Understanding this mechanical behavior during the elastic to plastic deformation transition by transmission-XRD is crucial for the development of Mg-Li alloys.
文摘The electron microscope provides numerous insights into physics, from demonstrations of fundamental quantummechanical principles to the physics of imaging and materials. It reveals the atomic and electronic structure of key regionssuch as defects and interfaces. We can learn the underlying physics governing properties, and gain insight into how tosynthesize new materials with improved properties. Some recent advances and possible future directions are discussed.