The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel...Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron m...The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.展开更多
The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the ...The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female.展开更多
Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also be...Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science.展开更多
Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigati...Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i...Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.展开更多
Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationshi...Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.展开更多
AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidi...AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.展开更多
The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted huma...The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.展开更多
The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal reso...The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.展开更多
Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not mee...Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.展开更多
Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during depo...Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during deposition by low-pressure c hemical vapour deposition(LPCVD) on Si(001) substrates at 700℃ have been invest igated by TEM of cross-section and plan-view specimens. At distances between the Ge layers of 35-50nm, vertical order of GeSi islands is observed for Ge-Si bila yer systems and for Ge-Si multilayer systems consisting of 5 layer pairs whereas lateral ordering parallel to <100> substrate directions is observed for the lat ter case only. In agreement with earlier results the vertical ordering in the mu ltilayer system can be understood as result of the elastic interaction between i sland nuclei forming in the layers with close islands in a buried layer below. T he lateral ordering along <100> may be attributed to the anisotropy of the elast ic interaction. Characteristic for all Si surfaces are the spatial correlation b etween the presence of island-induced lattice strain and the appearance of array s of larger square-shaped pyramids with distinct faceting and facet edges along <110>. The results reflect the importance of the control of growth parameters an d of the island-induced strain state for the evolution of the Si top layer surfa ce morphology during LPCVD growth.展开更多
Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for diffe...Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for different nominal Ge coverage by transmission electron microscopy (TEM) of plan-view and cross-section specime ns and have been compared with photoluminescence (PL) measurements of Si-capped layer samples. The transition from the 2-dimensional layer to the 3-dimensional island growth mode takes place for a Ge deposition of nominally less than 2 mono layers. Upon this transition, many coherent islands and few larger islands with extended defects are observed. The coherent islands possess a dome-like shape an d lateral sizes up to 130nm. Photoluminescence spectra show island-related peaks whose energy positions are shifted towards lower energy with higher Ge coverage .展开更多
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)the National Natural Science Fund for Innovative Research Groups of China (51621003)the National Natural Science Foundation of China (12074017)。
文摘Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
基金supported by the Kirikkale University Scientific Research Fund(Nos.2008/34 and 2008/35)
文摘The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.
文摘The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female.
文摘Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science.
文摘Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金the Projects of Science and Technology Commission of Shanghai Municipality(19ZR1473800 and 14DZ2260800)the Shanghai Rising-Star Program(17QA1401400)+1 种基金Young Elite Scientists Sponsorship Program by CAST(YESS)the Fundamental Research Funds for the Central Universities.
文摘Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.
文摘Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.
基金Supported by Institutional Review Board of Bagcilar Education and Research Hospital,Istanbul,Turkey(No.1852)
文摘AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0086835: Dr K Y Kum)the Ministry of Science, ICT and Future Planning (2011-0014231: Dr S W Chang)supported by a grant from the Kyung Hee University in 2013 (KHU-20131045)
文摘The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.
基金supported by the National Key R&D Program (No.2018YFA0208700 and No.2016YFA0200602)the National Natural Science Foundation of China (No.21688102 and No.21403222)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017224)
文摘The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.
基金Supported by the Basic Scientific Fund for National Public Research Institutes of China(Nos.GY02-2011T10,2015P07)the Qingdao Talent Program(No.13-CX-20)+1 种基金the National Natural Science Foundation of China(Nos.31100567,41176061)the National Natural Science Foundation for Creative Groups(No.41521064)
文摘Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.
文摘Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during deposition by low-pressure c hemical vapour deposition(LPCVD) on Si(001) substrates at 700℃ have been invest igated by TEM of cross-section and plan-view specimens. At distances between the Ge layers of 35-50nm, vertical order of GeSi islands is observed for Ge-Si bila yer systems and for Ge-Si multilayer systems consisting of 5 layer pairs whereas lateral ordering parallel to <100> substrate directions is observed for the lat ter case only. In agreement with earlier results the vertical ordering in the mu ltilayer system can be understood as result of the elastic interaction between i sland nuclei forming in the layers with close islands in a buried layer below. T he lateral ordering along <100> may be attributed to the anisotropy of the elast ic interaction. Characteristic for all Si surfaces are the spatial correlation b etween the presence of island-induced lattice strain and the appearance of array s of larger square-shaped pyramids with distinct faceting and facet edges along <110>. The results reflect the importance of the control of growth parameters an d of the island-induced strain state for the evolution of the Si top layer surfa ce morphology during LPCVD growth.
文摘Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for different nominal Ge coverage by transmission electron microscopy (TEM) of plan-view and cross-section specime ns and have been compared with photoluminescence (PL) measurements of Si-capped layer samples. The transition from the 2-dimensional layer to the 3-dimensional island growth mode takes place for a Ge deposition of nominally less than 2 mono layers. Upon this transition, many coherent islands and few larger islands with extended defects are observed. The coherent islands possess a dome-like shape an d lateral sizes up to 130nm. Photoluminescence spectra show island-related peaks whose energy positions are shifted towards lower energy with higher Ge coverage .