As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface ...As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface in this region.It has attracted significant interest from explorers about the prospecting potential at greater depths.Besides,the current deep drilling shows that the prospecting effect in the west portion is better than the region to the east.Does it imply that there is a difference in prospecting potential between the east and the west?This paper seeks to address the issue through fission track thermochronology on apatite and zircon to reveal the temperature-time evolution relationship of rock mass and to inverts their thermal evolution history.In addition,this study analyzes the transformation of ore deposits after mineralization,quantitatively calculates the uplift-erosion rate of rock mass,and summarizes the preservation law of ore deposits.Based on the thermal history simulation of the apatite fission track,our results show that the Guocheng gold belt has experienced three stages of thermal evolution:108-74,74-27,and 27-0 Ma.The uplift and cooling processes of the threestage tectonic uplift events are the results of multi-stage Pacific plate accretion.The calculated total denudation depth of the gold deposit in the Guocheng gold belt from Cretaceous to the present is about 3.4-5.3 km.The metallogenic depth of the ore body in the gold belt is 5.6-8.0 km,which indicates that the ore body in the Guocheng gold belt has suffered a significant degree of denudation.It is speculated that the location with less denudation in the southwest has greater prospecting potential.Our results quantitatively identify the uplift and denudation of the deposit after mineralization,which provides a new theoretical reference for regional mineralization,deep prospecting and exploration.展开更多
River is one of the geomorphic units that are the most sensitive to tectonic activity, of which the longitudinal profile serves as a key archieve to record information on active tectonics. The stream-power incision mo...River is one of the geomorphic units that are the most sensitive to tectonic activity, of which the longitudinal profile serves as a key archieve to record information on active tectonics. The stream-power incision model is an important means to analyze channel long profiles and to extract both temporal and spatial patterns of regional tectonic activity. Analytical solutions to the steady-state and linear transient-state equations of the model provides means to calibrate drainage basin concavity,calculate channel steepness index, determine drainage divide stability, project the paleo-channel profile, and to invert the tectonic uplift rate history. Yet, not all of these functions have been implemented in the published open-source tools. Here, we developed a set of open-source codes, RiverProAnalysis, which was based on the Matlab platform and integrated all of these functions. The products of the tool set are in the format of image, text and vector files, which not only can be used for visual analysis, but be read by softwares of geographic information system. Taking examples of two transient drainage catchments in the northern margin of the Taiyuan Basin, we analyzed the long profiles of the trunk streams, identified two generations of knickpoints, and estimated the minimum amount of river incision. We combined all the trunk and tributary channels together to model the catchment-wide uplift history and found moderate increases in the uplift rates since the Middle Pliocene and rapid accelation since the late Quaternary. The inverted results are consistent with the sedimentary records in the adjacent basin. By comparing the chi value,slope, and topographic relief of both sides of the catchment divide, we concluded the stability of the drainage divide. Our tool set integrates the main functions of the modern studies on fluvial landsape, thus providing a powerful tool for analyzing river long profiles and for understanding tectonic geomorphology.展开更多
基金co-financed by the National Key Research and Development Plan(No.2016YFC0600104)the Geological Research Project of China+1 种基金the National Gold Group Co.,Ltd.Xintai Gold Mining Co.,Ltd(Yantai,Shandong)(No.XY-DZ2020081)。
文摘As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface in this region.It has attracted significant interest from explorers about the prospecting potential at greater depths.Besides,the current deep drilling shows that the prospecting effect in the west portion is better than the region to the east.Does it imply that there is a difference in prospecting potential between the east and the west?This paper seeks to address the issue through fission track thermochronology on apatite and zircon to reveal the temperature-time evolution relationship of rock mass and to inverts their thermal evolution history.In addition,this study analyzes the transformation of ore deposits after mineralization,quantitatively calculates the uplift-erosion rate of rock mass,and summarizes the preservation law of ore deposits.Based on the thermal history simulation of the apatite fission track,our results show that the Guocheng gold belt has experienced three stages of thermal evolution:108-74,74-27,and 27-0 Ma.The uplift and cooling processes of the threestage tectonic uplift events are the results of multi-stage Pacific plate accretion.The calculated total denudation depth of the gold deposit in the Guocheng gold belt from Cretaceous to the present is about 3.4-5.3 km.The metallogenic depth of the ore body in the gold belt is 5.6-8.0 km,which indicates that the ore body in the Guocheng gold belt has suffered a significant degree of denudation.It is speculated that the location with less denudation in the southwest has greater prospecting potential.Our results quantitatively identify the uplift and denudation of the deposit after mineralization,which provides a new theoretical reference for regional mineralization,deep prospecting and exploration.
基金supported by the National Natural Science Foundation of China (Grant No. 41802227)。
文摘River is one of the geomorphic units that are the most sensitive to tectonic activity, of which the longitudinal profile serves as a key archieve to record information on active tectonics. The stream-power incision model is an important means to analyze channel long profiles and to extract both temporal and spatial patterns of regional tectonic activity. Analytical solutions to the steady-state and linear transient-state equations of the model provides means to calibrate drainage basin concavity,calculate channel steepness index, determine drainage divide stability, project the paleo-channel profile, and to invert the tectonic uplift rate history. Yet, not all of these functions have been implemented in the published open-source tools. Here, we developed a set of open-source codes, RiverProAnalysis, which was based on the Matlab platform and integrated all of these functions. The products of the tool set are in the format of image, text and vector files, which not only can be used for visual analysis, but be read by softwares of geographic information system. Taking examples of two transient drainage catchments in the northern margin of the Taiyuan Basin, we analyzed the long profiles of the trunk streams, identified two generations of knickpoints, and estimated the minimum amount of river incision. We combined all the trunk and tributary channels together to model the catchment-wide uplift history and found moderate increases in the uplift rates since the Middle Pliocene and rapid accelation since the late Quaternary. The inverted results are consistent with the sedimentary records in the adjacent basin. By comparing the chi value,slope, and topographic relief of both sides of the catchment divide, we concluded the stability of the drainage divide. Our tool set integrates the main functions of the modern studies on fluvial landsape, thus providing a powerful tool for analyzing river long profiles and for understanding tectonic geomorphology.