期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Micro Electrical Discharge Machining(μEDM):Holes Drilling and Characterization of the Process Parameters
1
作者 Asmae Tafraouti Yasmina Layouni 《材料科学与工程(中英文B版)》 2021年第3期109-116,共8页
μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electri... μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electrical discharges between a micro-tool and a workpiece,both of which are immersed in a dielectric.It is a complementary process to mechanical,laser,micro-machining techniques,and even to techniques derived from silicon microtechnology(RIE,DRIE,LIGA).However,the resolution ofμEDM is limited;it depends on several electrical and physical parameters.The goal of this paper is to characterize the holes obtained by drilling usingμEDM with different micro-tool diameters(Φ=250μm;Φ=80μm;Φ=40μm;Φ=20μm)for an experimental time of t=2 h.The results obtained let us conclude that a large diameter micro-tool(Φ=250μm)leads to removing a larger amount of material(43×10^(5)μm^(3))than small diameters:Φ=80μm;Φ=40μm;Φ=20μm where the removed volume is equal to 2.6×10^(5)μm^(3);105μm^(3);0.4×10^(5)μm^(3),respectively.The electrode-tool diameter influences the maximum depth of the holes;a diameter ofΦ=250μm generates a hole where the maximum depth is 170μm while small diameters:Φ=80μm;Φ=40μm;Φ=20μm provide holes with a depth of 82μm;51μm;50μm respectively.Through these experiments,we can also conclude that the lateral gap of the holes is almost constant.It is about 40μm whatever the diameter. 展开更多
关键词 μEDM electrical discharges hole drilling amount of removed material.
下载PDF
Micro-area Chemical Composition and Preserved P-T Evolution Trace of Phengite in Albite Gneiss from the Donghai Ultrahigh-Pressure Metamorphic Area,East China 被引量:2
2
作者 LIU Fulai ZHANG Zeming +2 位作者 XU Zhiqin YANG Jingsui XU Huifen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期183-189,共7页
Study of micro-area chemical compositions indicates that phengite in albite gneiss from hole ZK2304 of the Donghai region has evident compositional zoning. SiO2 and tetrahedrally coordinated Si contents decrease, and ... Study of micro-area chemical compositions indicates that phengite in albite gneiss from hole ZK2304 of the Donghai region has evident compositional zoning. SiO2 and tetrahedrally coordinated Si contents decrease, and Al2O3, AlIV and AlVI contents increase gradually from core to rim. However, K2O, MgO and FeO contents basically remain unchanged from core to rim. According to P-T estimates obtained from geothermometers and barometers, combined with previous experimental data, the core belt (micro-area I) of phengite was formed at T=637-672℃ and P=1.55-1.73 GPa, and the transitional belt (micro-area II) of the phengite were formed at r=594-654℃ and P=1.35-1.45 GPa. Towards the rim belt (micro-area III), the temperature decreased slightly, but the pressure decreased rapidly with r=542-630℃ and P=1.12-1.19 GPa. The P-T evolution path recorded by the compositional zoning of phengite is characterized by significant near-isothermal decompression, revealing that the gneiss has. undergone 展开更多
关键词 PHENGITE compositional zoning GNEISS genetic mechanism Donghai drill hole
下载PDF
A case study of gas drainage to low permeability coal seam 被引量:2
3
作者 Zhang Li Zhang Hui Guo Hao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期687-692,共6页
Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at low permeability coal seam is... Gas drainage at low gas permeability coal seam is a main barrier affecting safety and efficient production in coal mines. Therefore, the research and application of drainage technology at low permeability coal seam is a key factor for gas control of coal mine. In order to improve the drainage effect, this paper establishes a three-dimensional solid-gas-liquid coupling numerical model, and the gas drainage amounts of different schemes are examined inside the overburden material around the goaf. The Yangquan mine area is selected for the case study, and the gas movement regularity and emission characteristics are analyzed in detail, as well as the stress and fissure variation regularity. Also examinations are the released gas movement, enrichment range and movement regularity during coal extraction. Moreover, the gas drainage technology and drainage parameters for the current coal seam are studied. After measuring the gas drainage flow in-situ, it is concluded that the technology can achieve notable drainage results, with gas drainage rate increase by 30%–40% in a low permeability coal seam. 展开更多
关键词 Gas drainage Low permeability Ground drilling holes Coupling model Abutment stress
下载PDF
Analysis on Pore-Forming Pouring Pile Construction Technology of House Building Project
4
作者 Lili Hu 《Open Journal of Civil Engineering》 2016年第4期697-703,共8页
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and... Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction. 展开更多
关键词 Building Construction Pore-Forming Pouring Pile Normal Circulation Rotary drilling holes Forming Technology
下载PDF
Experimental and computational analysis of the coolant distribution considering the viscosity of the cutting fluid during machining with helical deep hole drills
5
作者 Ekrem Oezkaya Sebastian Michel Dirk Biermann 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第2期235-249,共15页
An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to eval... An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes.In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy.Micro particles are added to the cutting fluid circuit bya developed high-pressure mixing vessel.After the evaluation of suitable particle size,particle concentration and coolant pressure,a computational fluid dynamics(CFD)simulation is validated with the experimental results.The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57%between simulation and experiment.The simulation considers the kinematic viscosity of the fluid.The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between theguidechamfers.Theflow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication.With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved.Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process. 展开更多
关键词 Computational fluid dynamics(CFD)analysis:Viscosity-Tracermicro particles Fluidbehavior Helical deep hole drilling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部