期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Cutting edge preparation of microdrills by shear thickening polishing for improved hole quality in electronic PCBs
1
作者 Jiahuan WANG Mingfeng KE +7 位作者 Jiepei LIAO Yu ZHOU Saurav GOEL Jaya VERMA Xu WANG Weigang GUO Julong YUAN Binghai LYU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第2期99-107,共9页
Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial ... Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial to drill performance in machining fine-quality holes with a prolonged tool life.The miniature size involving submicron scale geometric dimensions,a complex flute shape,and low fracture toughness makes the cutting edge of microdrills susceptible to breakage and has been the primary limiting factor in edge preparation for microdrills.In this study,a newly developed cutting edge preparation method for microdrills was tested experimentally on electronic printed circuit boards.The proposed method,namely,shear thickening polishing,limited the cutting edge burrs and chipping on the cutting edge,and this in turn transformed the cutting edge’s radius from being sharp to smooth.Moreover,the edge–edge radius could be regulated by adjusting the processing time.PCB drilling experiments were conducted to investigate the influence of different cutting edge radii on wear,hole position accuracy,nail head value,and hole wall roughness.The proposed approach showed 20%enhancement in hole position accuracy,33%reduction in the nail head value,and 19%reduction in hole wall roughness compared with the original microdrill.However,a threshold is needed;without it,excessive shear thickening polishing will result in a blunt edge,which may accelerate the wear of the microdrill.Wear was identified as the primary factor that reduced hole quality.The study indicates that in printed circuit board machining,microdrills should effectively eliminate grinding defects and maintain the sharpness of the cutting edge as much as possible to obtain excellent drilling quality.Overall,shear thickening polishing is a promising method for cutting edge preparation of microdrills.Further research and optimization can lead to additional improvements in microdrill performance and contribute to the continued advancement of printed circuit board manufacturing. 展开更多
关键词 microdrill shear thickening polishing cutting edge preparation electronic printed circuit boards hole quality
原文传递
Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics 被引量:3
2
作者 Guofeng MA Renke KANG +3 位作者 Zhigang DONG Sen YIN Yan BAO Dongming GUO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第4期538-546,共9页
Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as ... Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites. 展开更多
关键词 longitudinal–torsional coupled ultrasonically drilling CFRP thrust force hole quality
原文传递
Theoretical and Experimental Analysis on Influence of Revolution Radius in Orbital Drilling 被引量:1
3
作者 杨吟飞 单以才 +2 位作者 章婷 何宁 李亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期498-507,共10页
Revolution radius is one of the significant parameters in orbital drilling,which has great influence on many factors,such as the cutting area of front and side cutting edge,undeformed chip geometry,delamination and bu... Revolution radius is one of the significant parameters in orbital drilling,which has great influence on many factors,such as the cutting area of front and side cutting edge,undeformed chip geometry,delamination and burr at hole exit side,hole surface roughness,cutting tool force and deflection,chip removal and heat transmission.First,the influence of revolution radius on the factors is discussed theoretically in detail.Analysis results show that big revolution radius can reduce axial cutting force,restrain exit delamination and burr,and improve chip removal and heat transmission.Then,single factor test and orthogonal test are utilized in the two processing methods as machining unidiameter holes with several cutting tools and machining different diameter holes with one tool.Finally,the influence of revolution radius on cutting force and hole machining precision is studied.These results provide a profound foundation for future optimization of cutting control parameters. 展开更多
关键词 robotic hole-making system orbital drilling revolution radius milling forces hole quality
下载PDF
Study on the reaming process of aluminum alloy 7050-T7451 under different cooling conditions
4
作者 Zi Ye Yong-Guo Wang Xin Yu 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第2期272-286,共15页
Aluminum alloy 7050 is widely used in the aeronautical industries.However,owing to their highly ductile property,chips created during high-speed machining cannot be naturally broken,and long continuous chips are unavo... Aluminum alloy 7050 is widely used in the aeronautical industries.However,owing to their highly ductile property,chips created during high-speed machining cannot be naturally broken,and long continuous chips are unavoidably formed,impacting the machining stability and quality of the parts.Because a smaller cutting allowance is required compared with conventional machining operations,the behavior of the chips during reaming operation may be more complex and different from those determined in previous investigations.Therefore,studying the characteristics of chip formation and hole quality during the reaming process is essential to improve the machinability of aluminum alloy 7050.In this study,three different cooling conditions were applied to reaming aluminum alloy 7050-T7451 with polycrystalline diamond(PCD)reamers.The finite element models(FEMs)were established to simulate the chip formation.The macro-and micro-morphologies of chips under the three cooling conditions were compared to analyze the chip behaviors.The diameter,surface roughness,and micro-morphologies of the reamed holes were also analyzed to evaluate the hole quality.The results showed that the chip morphology was strongly influenced by the cutting parameters and cooling strategies.It was found that the desired chip morphologies satisfactory geometrical accuracy and surface quality during the reaming of aluminum alloy 7050-T7451 could be achieved using internal cooling at a spindle speed of 8000 r/min and a feed rate of 0.0l mm/z.This study also demonstrates the feasibility of an internal cooling strategy for breaking chips when reaming aluminum alloy 7050-T7451,which opens new possibilities for improving the chip-snarling that occurs during hole machining. 展开更多
关键词 Chip morphology hole quality Cooling conditions REAMING Aluminum alloy 7050-T7451 Finite element model(FEM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部