Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of -35 min and an interval of about 336 ± 14 d. A binary black hole system is proposed to be at the nucleus of this obje...Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of -35 min and an interval of about 336 ± 14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole. The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole. Based on the observations of PKS 1510-089, we estimate the parameters of the binary black hole system. The masses for the primary and secondary black holes are 1.37 × 10^9M⊙(M⊙ is the solar mass) and 1.37 × 10^7M⊙, and the major axis for this pair being about 0.1 parsec(pc).展开更多
The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accreti...The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solu- tions at high turbulent viscosity parameter a(〉0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field Bp is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-r2BBz) increases with the increase in M. Bp, -r2BBz as well as the plasma beta/3p get strongly augmented with the increase in the value of a, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.展开更多
The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents f...The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.展开更多
Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accurac...Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.展开更多
AIM:To compare the outcomes of four adjuvants used for internal limiting membrane(ILM)peeling in macular hole surgery,including indocyanine green(ICG),brilliant blue G(BBG),triamcinolone(TA)and trypan blue(TB),through...AIM:To compare the outcomes of four adjuvants used for internal limiting membrane(ILM)peeling in macular hole surgery,including indocyanine green(ICG),brilliant blue G(BBG),triamcinolone(TA)and trypan blue(TB),through systematic review and random-effects Bayesian network Meta-analysis.METHODS:PubMed,Cochrane library databases and Web of Science were searched until August 2018 for clinical trials comparing the above four adjuvants.ORs for postoperative best corrected visual acuity(BCVA)improvement and primary macular hole closure rates were compared between the different adjuvants.RESULTS:Twenty-seven eligible articles were included.For postoperative BCVA improvement,results of BBGassisted peeling were significantly more favorable than those of ICG(WMD 0.08,95%credible interval 0.01-0.16)and TA ranked highest.No significant differences were found between any other two groups in postoperative BCVA improvement.For postoperative primary macular hole closure rates,BBG ranked highest.However,no significant differences were shown between any two groups.CONCLUSION:TA and BBG are the optimum adjuvants for achieving postoperative BCVA improvement macular hole surgery with adjuvant-assisted ILM peeling.Among all adjuvants,the use of BBG is associated with the highest postoperative macular hole closure rate.展开更多
The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic f...The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.展开更多
AIM: To evaluate the effect of internal limiting membrane(ILM) peeling with indocyanine green(ICG), brilliant blue G(BBG), triamcinolone acetonide(TA), trypan blue(TB), or without dye for the treatment of idiopathic m...AIM: To evaluate the effect of internal limiting membrane(ILM) peeling with indocyanine green(ICG), brilliant blue G(BBG), triamcinolone acetonide(TA), trypan blue(TB), or without dye for the treatment of idiopathic macular hole(IMH). METHODS: A search was conducted using Pub Med, EMBASE, and CENTRAL(Cochrane Central Register of Controlled Trials) for related studies published before October 2018. RESULTS: A total of 29 studies and 2514 eyes were included in this network Meta-analysis. For IMH closure, the rank from the best to the worse treatment was: BBG, TB, TA, ICG, and no dye. There was a significant difference in postoperative IMH closure rate between BBG and no dye. The rank of the best to the worse treatment to improve visual acuity was: BBG, TB, no dye, TA, and ICG. The improvement rate of visual acuity after using BBG was significantly higher than ICG. The improvement rate of visual acuity was more favorable with TB than ICG, TA, and no dye. CONCLUSION: BBG can contribute to better anatomical and functional outcomes compared to other dyes for ILM peeling in patients with IMH. The results show that the best treatment of ILM peeling with dyes is BBG.展开更多
In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, dril...In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, drilling large-diameter rock-socketed pile holes with conventional drilling method such as rotary drilling or cable tool drilling is time-consuming and the cost is usually very high. In order to drill large-diameter rocksocketed pile holes faster at relatively low cost, the FGC15A large-diameter DTH air hammer drilling system was developed in 1987 and was given the second-clasa award by Ministry of Geology and Mineral Resources in 1991. Since it was innovated the drilling system has been used in more than twenty important and tough pro- jects on land, and wonderful results were acquired. At the same time the large-diameter DTH air hammer drilling system was improved continuously. The FGC15D is the latest version of the technique.展开更多
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
The laser-interferometer gravitational-wave observatory (LIGO) has reported several observations of binary black hole mergers. Unfortunately, no exact solutions to the equations describing binary black hole systems ex...The laser-interferometer gravitational-wave observatory (LIGO) has reported several observations of binary black hole mergers. Unfortunately, no exact solutions to the equations describing binary black hole systems exist. In particular, no exact solutions are available for the case in which a binary black hole system undergoes a merger;hence, we must rely on numerical calculations of the Maxwell-Einstein equations to construct the templates used to analyze gravitational wave data about suspected binary black hole systems [1,2].展开更多
Taking a black hole as a black body system, using general black body radiation theory, a Schwarzschild black hole and a Kerr-Newman black hole are investigated respectively. It is concluded that a black hole can be re...Taking a black hole as a black body system, using general black body radiation theory, a Schwarzschild black hole and a Kerr-Newman black hole are investigated respectively. It is concluded that a black hole can be regarded as an ideal general black body system exactly for the changing process only. However, a stationary global black hole cannot be smoothly regarded as a general black body system. A black hole has some special characteristics which different from a general thermodynamics system. This conclusion means that a black hole should be inherently dynamical, at least when it is taken as a black body system.展开更多
The influence of pressure on miscibility behavior of the systems polystyrene/cyclopentan(?)and polystyrene/1-phenyldecane is studied with a modified hole theory.It is found that the pres-sure dependence of excess volu...The influence of pressure on miscibility behavior of the systems polystyrene/cyclopentan(?)and polystyrene/1-phenyldecane is studied with a modified hole theory.It is found that the pres-sure dependence of excess volume is responsible for the different kinds of behavior of these two sys-tems.Furthermore,the excess volume is decomposed into two separatc parts,one from the contri-bution of cell volume expansion and the other from the change of hole fraction,and their relation-ship with pressure dependence of the miscibility behavior is analysed.展开更多
In many astrophysical black hole systems, episodic jets of plasma blobs have been observed, which are much faster and more powerful than continuous jets. A magnetohydrodynamical model was proposed by Yuan et al. to st...In many astrophysical black hole systems, episodic jets of plasma blobs have been observed, which are much faster and more powerful than continuous jets. A magnetohydrodynamical model was proposed by Yuan et al. to study the formation of episodic jets in Sgr A*. By taking Sgr A* and a stellar mass black hole as examples, we modify the model of Yuan et al. by including the effects of relativity, and further study the relativistic motion and expansion of episodic jets of plasma blobs. Then we study the collision between two consecutive ejections in the modified model, and calculate the magnetic energy released in the collision. Our results show two consecutive blobs can collide with each other, and the released magnetic energy is more than 1050 erg, which supports the idea that a gamma-ray burst is powered by the collision of episodic jets, as suggested by Yuan & Zhang.展开更多
We correct from the previous paper: the first, second and third order derivatives of the Bondi metric function J at the ISCO of the binary system consisting of a Schwarzschild black hole and a point particle. Previous...We correct from the previous paper: the first, second and third order derivatives of the Bondi metric function J at the ISCO of the binary system consisting of a Schwarzschild black hole and a point particle. Previously, these derivatives where not correctly determined and that resulted in the incorrect determination of the emitted gravitational radiation at null infinity. The now correctly calculated gravitational radiation is now in full agreement with that obtained by the standard 5.5 PN formalism to about ninety eight percent. The small percentage difference observed is due to the slow convergence property of the PN formalism as compared to the null cone formalism, otherwise the results are basically the same.展开更多
Discovery of GRB clusters allows us to determine coordinates and characteristics of their sources. The objects radiating GRBs are reliably identified with black hole binaries, including the Galactic binaries. One of t...Discovery of GRB clusters allows us to determine coordinates and characteristics of their sources. The objects radiating GRBs are reliably identified with black hole binaries, including the Galactic binaries. One of the unusual GRB properties, which are determined by black hole, is revealed in that the measured arrival direction of GRB does not coincide with the real location of its source. Just this fact allows us to find the objects radiating GRBs. On the basis of the general relativity theory's effects, observed in the GRB clusters, the technique of the black hole masses measurement is developed. The calculated black hole masses for the majority of known Galactic BH binaries are presented. It is briefly shown how the incorrect interpretations of observational facts result in an erroneous idea of the GRB cosmological origin. In fact, two problems are solved in the paper: the GRB origin and the reality of BH existence.展开更多
We analytically model a relativistic problem consisting of a point-particle with mass m in close orbit around a stationary Schwarzschild black hole with mass M = 1 using the null-cone formalism when l = 2. We use the ...We analytically model a relativistic problem consisting of a point-particle with mass m in close orbit around a stationary Schwarzschild black hole with mass M = 1 using the null-cone formalism when l = 2. We use the -function to model the matter density of the particle. To model the whole problem, we apply the second order differential equation obtained elsewhere for a dynamic thin matter shell around a Schwarzschild black hole. The only thing that changes on the equation is the quasi-normal mode parameter which now represent the orbital frequency of the particle. We compare our results with that of the standard 5.5 PN formalism and found that there is a direct proportionality factor that relates the two results, i.e. the two formalisms.展开更多
Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption...Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.展开更多
●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consec...●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consecutive patients(17 eyes)diagnosed with MH.Inclusion criteria involved a hole aperture diameter larger than 600μm or the presence of an unclosed MH larger than 600μm following the previous vitrectomy.Standard MH repair procedures were administered in all cases,involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle.A comprehensive assessment was conducted for each case before and after surgery,and optical coherence tomography(OCT)images were captured at every follow-up point.●RESULTS:The mean preoperative aperture diameter was 747±156μm(range 611-1180μm),with a mean base diameter of 1390±435μm(range 578-2220μm).Following surgery,all cases achieved complete anatomical closure of MH,with 13 cases(76.5%)exhibiting type 1 closure and 4 cases(23.5%)demonstrating type 2 closure.No significant differences were observed in the preoperative OCT variables between the two closure types.Eyes with type 1 closure showed a significantly improved visual acuity(0.70±0.10,range 0.50-0.80)compared to those with type 2 closure(0.90±0.12,range 0.80-1.00,P=0.014).●CONCLUSION:The MH hydromassage technique demonstrates promising results,achieving acceptable closure rates in cases of large or persistent MH.This technique may serve as an effective adjunctive maneuver during challenging MH surgery.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
基金Project supported by State Key Development Program for Basic Research of China (Grant No 19990754), the National Science Foundation for 0utstanding Young Scientists of China (Grant No 10125313), the National Natural Science Foundation of China (Grant No 10573005), and the Fund for Top Scholars of Guangdong Province, China (Grant No 02114). Acknowledgments The authors wish to thank the referee for the comments and suggestions, and are also grateful for useful discussion to Dr Wang Hong-Guang, Liu Yi, Zhou Ji- Liang, Chen Jian-Ling and Xu Shou-Xi.
文摘Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of -35 min and an interval of about 336 ± 14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole. The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole. Based on the observations of PKS 1510-089, we estimate the parameters of the binary black hole system. The masses for the primary and secondary black holes are 1.37 × 10^9M⊙(M⊙ is the solar mass) and 1.37 × 10^7M⊙, and the major axis for this pair being about 0.1 parsec(pc).
文摘The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solu- tions at high turbulent viscosity parameter a(〉0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field Bp is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-r2BBz) increases with the increase in M. Bp, -r2BBz as well as the plasma beta/3p get strongly augmented with the increase in the value of a, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173011, 11143001, 11103003 and 11045004)the National Basic Research Program of China (973 program, 2009CB824800)the Fundamental Research Funds for the Central Universities (HUST: 2011TS159)
文摘The quasi-periodic oscillations (QPOs) in black hole (BH) systems with different scales are interpreted based on the magnetic reconnection of large-scale mag- netic fields generated by toroidal electric currents flowing in the inner region of the accretion disk, where the current density is assumed to be proportional to the mass density of the accreting plasma. The magnetic connection (MC) is taken into account in resolving dynamic equations describing the accretion disk, in which the MC be- tween the inner and outer disk regions, between the plunging region and the disk, and between the BH horizon and the disk are involved. It turns out that a single QPO frequency associated with several BH systems with different scales can be fitted by in- voking the magnetic reconnection due to the MC between the inner and outer regions of the disk, including the BH binaries XTE J1859+226, XTE J1650-500 and GRS 1915+105 and the massive BHs in NGC 5408 X-1 and RE J1034+396. In addition, the X-ray spectra corresponding to the QPOs for these sources are fitted based on the typical disk-corona model.
基金the National Natural Science Foundation of China (Grant No. 61403040)
文摘Dynamometer cards are commonly used to analyze down-hole working conditions of pumping systems in actual oil production. Nowadays, the traditional supervised learning methods heavily rely on the classification accuracy of the training samples. In order to reduce the errors of manual classification, an automatic clustering algorithm is proposed and applied to diagnose down-hole conditions of pumping systems. The spectral clustering (SC) is a new clustering algorithm, which is suitable for any data distribution. However, it is sensitive to initial cluster centers and scale parameters, and needs to predefine the cluster number. In order to overcome these shortcom- ings, we propose an automatic clustering algorithm, fast black hole-spectral clustering (FBH-SC). The FBH algo- rithm is used to replace the K-mean method in SC, and a CritC index function is used as the target function to automatically choose the best scale parameter and clus- tering number in the clustering process. Different simulation experiments were designed to define the relationship among scale parameter, clustering number, CritC index value, and clustering accuracy. Finally, an example is given to validate the effectiveness of the proposed algorithm.
文摘AIM:To compare the outcomes of four adjuvants used for internal limiting membrane(ILM)peeling in macular hole surgery,including indocyanine green(ICG),brilliant blue G(BBG),triamcinolone(TA)and trypan blue(TB),through systematic review and random-effects Bayesian network Meta-analysis.METHODS:PubMed,Cochrane library databases and Web of Science were searched until August 2018 for clinical trials comparing the above four adjuvants.ORs for postoperative best corrected visual acuity(BCVA)improvement and primary macular hole closure rates were compared between the different adjuvants.RESULTS:Twenty-seven eligible articles were included.For postoperative BCVA improvement,results of BBGassisted peeling were significantly more favorable than those of ICG(WMD 0.08,95%credible interval 0.01-0.16)and TA ranked highest.No significant differences were found between any other two groups in postoperative BCVA improvement.For postoperative primary macular hole closure rates,BBG ranked highest.However,no significant differences were shown between any two groups.CONCLUSION:TA and BBG are the optimum adjuvants for achieving postoperative BCVA improvement macular hole surgery with adjuvant-assisted ILM peeling.Among all adjuvants,the use of BBG is associated with the highest postoperative macular hole closure rate.
基金Project(2007CB707706) supported by the Major State Basic Research Development Program of ChinaProjects(2007E213,2007E203) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.
基金Supported by the National Natural Science Foundation of China (No.81870686)the Natural Science Foundation of Beijing Municipal (No.7184201)the Capital’s Funds for Health Improvement and Research (No.2018-12021)
文摘AIM: To evaluate the effect of internal limiting membrane(ILM) peeling with indocyanine green(ICG), brilliant blue G(BBG), triamcinolone acetonide(TA), trypan blue(TB), or without dye for the treatment of idiopathic macular hole(IMH). METHODS: A search was conducted using Pub Med, EMBASE, and CENTRAL(Cochrane Central Register of Controlled Trials) for related studies published before October 2018. RESULTS: A total of 29 studies and 2514 eyes were included in this network Meta-analysis. For IMH closure, the rank from the best to the worse treatment was: BBG, TB, TA, ICG, and no dye. There was a significant difference in postoperative IMH closure rate between BBG and no dye. The rank of the best to the worse treatment to improve visual acuity was: BBG, TB, no dye, TA, and ICG. The improvement rate of visual acuity after using BBG was significantly higher than ICG. The improvement rate of visual acuity was more favorable with TB than ICG, TA, and no dye. CONCLUSION: BBG can contribute to better anatomical and functional outcomes compared to other dyes for ILM peeling in patients with IMH. The results show that the best treatment of ILM peeling with dyes is BBG.
文摘In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, drilling large-diameter rock-socketed pile holes with conventional drilling method such as rotary drilling or cable tool drilling is time-consuming and the cost is usually very high. In order to drill large-diameter rocksocketed pile holes faster at relatively low cost, the FGC15A large-diameter DTH air hammer drilling system was developed in 1987 and was given the second-clasa award by Ministry of Geology and Mineral Resources in 1991. Since it was innovated the drilling system has been used in more than twenty important and tough pro- jects on land, and wonderful results were acquired. At the same time the large-diameter DTH air hammer drilling system was improved continuously. The FGC15D is the latest version of the technique.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.
基金supported by the National Natural Science Foundation of China(Grant Nos.11690023,and 11622546)the Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Hunan(Grant No.2018JJ2073)
文摘The laser-interferometer gravitational-wave observatory (LIGO) has reported several observations of binary black hole mergers. Unfortunately, no exact solutions to the equations describing binary black hole systems exist. In particular, no exact solutions are available for the case in which a binary black hole system undergoes a merger;hence, we must rely on numerical calculations of the Maxwell-Einstein equations to construct the templates used to analyze gravitational wave data about suspected binary black hole systems [1,2].
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10773002 and 10875012)the National Basic Research Program of China (Grant No. 2003CB716302)
文摘Taking a black hole as a black body system, using general black body radiation theory, a Schwarzschild black hole and a Kerr-Newman black hole are investigated respectively. It is concluded that a black hole can be regarded as an ideal general black body system exactly for the changing process only. However, a stationary global black hole cannot be smoothly regarded as a general black body system. A black hole has some special characteristics which different from a general thermodynamics system. This conclusion means that a black hole should be inherently dynamical, at least when it is taken as a black body system.
文摘The influence of pressure on miscibility behavior of the systems polystyrene/cyclopentan(?)and polystyrene/1-phenyldecane is studied with a modified hole theory.It is found that the pres-sure dependence of excess volume is responsible for the different kinds of behavior of these two sys-tems.Furthermore,the excess volume is decomposed into two separatc parts,one from the contri-bution of cell volume expansion and the other from the change of hole fraction,and their relation-ship with pressure dependence of the miscibility behavior is analysed.
基金Supported by the National Natural Science Foundation of China
文摘In many astrophysical black hole systems, episodic jets of plasma blobs have been observed, which are much faster and more powerful than continuous jets. A magnetohydrodynamical model was proposed by Yuan et al. to study the formation of episodic jets in Sgr A*. By taking Sgr A* and a stellar mass black hole as examples, we modify the model of Yuan et al. by including the effects of relativity, and further study the relativistic motion and expansion of episodic jets of plasma blobs. Then we study the collision between two consecutive ejections in the modified model, and calculate the magnetic energy released in the collision. Our results show two consecutive blobs can collide with each other, and the released magnetic energy is more than 1050 erg, which supports the idea that a gamma-ray burst is powered by the collision of episodic jets, as suggested by Yuan & Zhang.
文摘We correct from the previous paper: the first, second and third order derivatives of the Bondi metric function J at the ISCO of the binary system consisting of a Schwarzschild black hole and a point particle. Previously, these derivatives where not correctly determined and that resulted in the incorrect determination of the emitted gravitational radiation at null infinity. The now correctly calculated gravitational radiation is now in full agreement with that obtained by the standard 5.5 PN formalism to about ninety eight percent. The small percentage difference observed is due to the slow convergence property of the PN formalism as compared to the null cone formalism, otherwise the results are basically the same.
文摘Discovery of GRB clusters allows us to determine coordinates and characteristics of their sources. The objects radiating GRBs are reliably identified with black hole binaries, including the Galactic binaries. One of the unusual GRB properties, which are determined by black hole, is revealed in that the measured arrival direction of GRB does not coincide with the real location of its source. Just this fact allows us to find the objects radiating GRBs. On the basis of the general relativity theory's effects, observed in the GRB clusters, the technique of the black hole masses measurement is developed. The calculated black hole masses for the majority of known Galactic BH binaries are presented. It is briefly shown how the incorrect interpretations of observational facts result in an erroneous idea of the GRB cosmological origin. In fact, two problems are solved in the paper: the GRB origin and the reality of BH existence.
文摘We analytically model a relativistic problem consisting of a point-particle with mass m in close orbit around a stationary Schwarzschild black hole with mass M = 1 using the null-cone formalism when l = 2. We use the -function to model the matter density of the particle. To model the whole problem, we apply the second order differential equation obtained elsewhere for a dynamic thin matter shell around a Schwarzschild black hole. The only thing that changes on the equation is the quasi-normal mode parameter which now represent the orbital frequency of the particle. We compare our results with that of the standard 5.5 PN formalism and found that there is a direct proportionality factor that relates the two results, i.e. the two formalisms.
基金Supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q14024)
文摘Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.
基金Supported by National Natural Science Foundation of China(NSFC)fund(No.81970815).
文摘●AIM:To introduce the macular hole(MH)hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH.●METHODS:This retrospective observational case series comprised 16 consecutive patients(17 eyes)diagnosed with MH.Inclusion criteria involved a hole aperture diameter larger than 600μm or the presence of an unclosed MH larger than 600μm following the previous vitrectomy.Standard MH repair procedures were administered in all cases,involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle.A comprehensive assessment was conducted for each case before and after surgery,and optical coherence tomography(OCT)images were captured at every follow-up point.●RESULTS:The mean preoperative aperture diameter was 747±156μm(range 611-1180μm),with a mean base diameter of 1390±435μm(range 578-2220μm).Following surgery,all cases achieved complete anatomical closure of MH,with 13 cases(76.5%)exhibiting type 1 closure and 4 cases(23.5%)demonstrating type 2 closure.No significant differences were observed in the preoperative OCT variables between the two closure types.Eyes with type 1 closure showed a significantly improved visual acuity(0.70±0.10,range 0.50-0.80)compared to those with type 2 closure(0.90±0.12,range 0.80-1.00,P=0.014).●CONCLUSION:The MH hydromassage technique demonstrates promising results,achieving acceptable closure rates in cases of large or persistent MH.This technique may serve as an effective adjunctive maneuver during challenging MH surgery.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.