期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer
1
作者 袁广才 徐征 +4 位作者 赵谡玲 张福俊 许娜 田雪雁 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3990-3994,共5页
The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a ... The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7- diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers arc limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at VDS = --20 V showed excellent hole mobility μFE and threshold voltage VTH of 0.58 cm^2/(V-s) and -4.6 V, respectively. 展开更多
关键词 organic thin-film transistor ultra-thin hole-blocking layer double-conductible channels
下载PDF
BiPh-m-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship
2
作者 陈宁宁 谭婉怡 +5 位作者 高栋雨 邹建华 刘俊哲 彭俊彪 曹镛 朱旭辉 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第7期219-223,共5页
We report a simple hole-blocking material (biphenyl-3,3'-diyl)bis(diphenylphosphine oxide) (BiPh-m-BiDPO) based on our recent advance. The bis(phosphine oxide) compound shows HOMO/LUMO levels of ∽-6.71/- 2.5... We report a simple hole-blocking material (biphenyl-3,3'-diyl)bis(diphenylphosphine oxide) (BiPh-m-BiDPO) based on our recent advance. The bis(phosphine oxide) compound shows HOMO/LUMO levels of ∽-6.71/- 2.51 eV. Its phosphorescent spectrum in a solid film features two major emission bands peaking at 2.69 and 2.4eV, corresponding to 0-0 and 01 vibronic transitions, respectively. The measurement of the electron-only devices reveals that BiPh-m-BiDPO possesses electron mobility of 2.28 × 10^-9-3.22× 10^-8cm2 V-1s-1 at E = 2- 5 × 10^5 V/cm. The characterization of the sky blue fluorescent and red phosphorescent pin organic light-emitting diodes (OLEDs) utilizing BiPh-m-BiDPO as the hole blocker shows that its shallow LUMO level as well as the low electron mobility affects significantly the power efficiency and hence operational stability, relative to the luminous efficiency, especially at high luminance. In combination with our recent results, the present study provides an indepth insight on the molecular structure-property correlation in the organic phosphinyl-containing hole-blocking materials. 展开更多
关键词 OLEDs BiPh-m-BiDPO as a hole-blocking Layer for Organic Light-Emitting Diodes:Revealing Molecular Structure-Properties Relationship
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部