期刊文献+
共找到519篇文章
< 1 2 26 >
每页显示 20 50 100
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
1
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
Stable Methylammonium-Free p-i-n Perovskite Solar Cells and Mini-Modules with Phenothiazine Dimers as Hole-Transporting Materials
2
作者 Luigi Angelo Castriotta Rossella Infantino +9 位作者 Luigi Vesce Maurizio Stefanelli Alessio Dessì Carmen Coppola Massimo Calamante Gianna Reginato Alessandro Mordini Adalgisa Sinicropi Aldo Di Carlo Lorenzo Zani 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期383-392,共10页
During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configuratio... During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests. 展开更多
关键词 methylammonium-free perovskite mini-modules organic hole-transporting layers perovskite solar cells stability studies
下载PDF
Simple hybrid dithiafulvenes-triphenylamine systems as dopant-free hole-transporting materials for efficient perovskite solar cells 被引量:2
3
作者 Zhongquan Wan Yunpeng Zhang +5 位作者 Jinyu Yang Jianxing Xia Fangyan Lin Xiaojun Yao Junsheng Luo Chunyang Jia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期293-299,共7页
Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite sol... Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%). 展开更多
关键词 Perovskite solar cells hole-transporting materials Hybrid conjugated systems Triphenylamine 1 4-Dithiafulvenes
下载PDF
Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization 被引量:1
4
作者 Deng Wang Jiming Zheng +4 位作者 Xingzhu Wang Jishu Gao Weiguang Kong Chun Cheng Baomin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期207-213,共7页
Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there... Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%. 展开更多
关键词 hole-transportING MATERIAL NIOX PEROVSKITE solar cells Thermally assisted blade-coating Ambient condition Fabrication
下载PDF
Synthesis and Characteristics of Hole-transporting Materials Based on Biphenyl Diamine Derivatives with Carbazole Groups 被引量:1
5
作者 ZHANG Qian CHEN Jiang-shan +4 位作者 CHENG Yan-xiang WANG Li-xiang MA Dong-ge JING Xia-bin WANG Fo-song 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期647-650,共4页
Two hole-transporting materials containing carbazole moieties with TPD- and NPB-like structures, 4,4′-bis [ N- (4-carbazolylphenyl) -N-phenylamino ] biphenyl ( CPB ) and 4,4′-bis [ N- ( 4-carbazolylphenyl ) -... Two hole-transporting materials containing carbazole moieties with TPD- and NPB-like structures, 4,4′-bis [ N- (4-carbazolylphenyl) -N-phenylamino ] biphenyl ( CPB ) and 4,4′-bis [ N- ( 4-carbazolylphenyl ) -N- ( 1-naphthyl ) amino] biphenyl( CNB), were synthesized via a modified Ullmann reaction. The resulting compounds were thermally stable with high glass transition temperatures ranging from 145 to 147 ℃ and possessed a good electrochemical reversibility and hole-transporting properties. Typical double-layer device evaluation with the structure ITO/CPB(40 nm)/ Alq3 (60 nm)/LiF/Al demonstrated that they were promising hole-transporting materials with a current efficiency of 5.25 cd/A and a power efficiency of 2.00 lm/W. 展开更多
关键词 ELECTROLUMINESCENCE hole-transporting property Glass transition temperature
下载PDF
An asymmetrically substituted dithieno[3,2-b:2',3'-d]pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells 被引量:1
6
作者 Jingwen Jia Yue Zhang +3 位作者 Liangsheng Duan Quanping Wu Yu Chen Song Xue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期51-57,共7页
Hole-transporting materials play a vital role in terms of the performance of perovskite solar cells(PSCs).The dithieno[3,2-b:2’,3’-d]pyrrole(DTP),an S,N-heterocyclic building block,has been proved to be desirable fo... Hole-transporting materials play a vital role in terms of the performance of perovskite solar cells(PSCs).The dithieno[3,2-b:2’,3’-d]pyrrole(DTP),an S,N-heterocyclic building block,has been proved to be desirable for molecular design of hole-transporting materials in PSCs.We developed an asymmetrically substituted DTP small-molecule(JW12)and a reference compound(JW11).The asymmetrical structure of JW12 leads to different absorption properties and electron distribution.The device in a planar n-i-p architecture using JW12 shows a much higher PCE(18.07%)than that based on JW11(15.46%),which is also better than the device based on spiro-OMe TAD(17.47%).We hope our research can provide a new perspective in molecular design of organic HTMs for perovskite solar cells. 展开更多
关键词 hole-transporting materials DTP PEROVSKITE Photovoltaic performance
下载PDF
A crosslinked polymer as dopant-free hole-transport material for efficient n-i-p type perovskite solar cells 被引量:1
7
作者 Linqin Wang Fuguo Zhang +10 位作者 Tianqi Liu Wei Zhang Yuanyuan Li Bin Cai Lanlan He Yu Guo Xichuan Yang Bo Xu James M.Gardner Lars Kloo Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期211-218,共8页
A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p ty... A new crosslinked polymer,called P65,with appropriate photo-electrochemical,opto-electronic,and thermal properties,has been designed and synthesized as an efficient,dopant-free,hole-transport material(HTM)for n-i-p type planar perovskite solar cells(PSCs).P65 is obtained from a low-cost and easily synthesized spiro[fluorene-9,90-xanthene]-30,60-diol(SFX-OH)-based monomer X65 through a freeradical polymerization reaction.The combination of a three-dimensional(3 D)SFX core unit,holetransport methoxydiphenylamine group,and crosslinked polyvinyl network provides P65 with good solubility and excellent film-forming properties.By employing P65 as a dopant-free hole-transport layer in conventional n-i-p type PSCs,a power conversion efficiency(PCE)of up to 17.7%is achieved.To the best of our knowledge,this is the first time a 3 D,crosslinked,polymeric dopant-free HTM has been reported for use in conventional n-i-p type PSCs.This study provides a new strategy for the future development of a 3 D crosslinked polymeric dopant-free HTM with a simple synthetic route and low-cost for commercial,large-scale applications in future PSCs. 展开更多
关键词 Perovskite solar cell hole-transport material Dopant-free Crosslinked polymer Spiro[fluorene-9 9’-xanthene](SFX)
下载PDF
Phenylfluorenamine-functionalized poly(N-vinylcarbazole)s as dopant-free polymer hole-transporting materials for inverted quasi-2D perovskite solar cells 被引量:1
8
作者 Zhengwu Pan Han Gao +11 位作者 Yingying Yang Qin Zou Darui Peng Pinghui Yang Jiangli Cai Jin Qian Jiewei Li Chengrong Yin Nana Wang Renzhi Li Jianpu Wang Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期123-131,I0004,共10页
In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting m... In order to improve the efficiency and stability of inverted three-dimensional(3D) or quasi-2D perovskite solar cells(PSCs) for future commercialization, exploring high efficient dopant-free polymer holetransporting materials(HTMs) is still desired and meaningful. One simple and efficient way to achieve high performance dopant-free HTMs is to synthesize novel non-conjugated side-chain polymers via rational molecular design. In this work, N-(4-methoxyphenyl)-9,9-dimethyl-9H-fluoren-2-amine(FMeNPh) groups are introduced into the poly(N-vinylcarbazole)(PVK) side chains to afford two nonconjugated polymers PVCz-DFMeNPh and PVCz-FMeNPh as dopant-free HTMs in inverted quasi-2D PSCs. Benefited from the flexible properties of polyethylene backbone and excellent optoelectronic natures of FMeNPh side-chain groups, PVCz-DFMeNPh with more FMeNPh units exhibited excellent thermal stability, well-matched energy levels and improved charge mobility as compared to PTAA and PVCzFMeNPh. Moreover, the morphologies investigation of quasi-2D perovskite on PVCz-DFMeNPh shows more compact and homogeneous perovskite films than those on PTAA and PVCz-FMeNPh. As a result,the dopant-free PVCz-DFMeNPh based inverted quasi-2D PSCs deliver power conversion efficiency(PCE) up to 18.44% as well as negligible hysteresis and favorable long-term stability, which represents as excellent performance reported to date for inverted quasi-2D PSCs. The results demonstrate the great potentials of constructing non-conjugated side-chain polymer HTMs based on phenylfluorenamine-func tionalized PVK for the development of high efficient and stable inverted 3D or quasi-2D PSCs. 展开更多
关键词 Phenylfluorenamine Non-conjugated polymers Dopant-free hole-transporting materials Quasi-2D perovskite solar cells
下载PDF
Truxene-based Hole-transporting Materials for Perovskite Solar Cells 被引量:1
9
作者 林琳琳 涂用广 +5 位作者 汤昌泉 马云龙 陈善慈 尹志刚 魏佳骏 郑庆东 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第10期1517-1524,共8页
Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delive... Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs. 展开更多
关键词 truxene hole-transporting materials photovoltaic perovskite solar cells small molecules
下载PDF
Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells
10
作者 Xueyuan Liu Fei Zhang +5 位作者 Xicheng Liu Mengna Sun Shirong Wang Dongmei Li Qingbo Meng Xianggao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期702-708,共7页
Two electron-rich, solution-processable phenonaphthazine derivatives, 5,12-bis(N-[4,4'-bis-(phenyl) aminophen-4 ''-yl]}-phenonaphthazine (BPZTPA) and 5,12-bis{N-[4,4'-bis(methoxy-phenyl)aminophen-4'... Two electron-rich, solution-processable phenonaphthazine derivatives, 5,12-bis(N-[4,4'-bis-(phenyl) aminophen-4 ''-yl]}-phenonaphthazine (BPZTPA) and 5,12-bis{N-[4,4'-bis(methoxy-phenyl)aminophen-4'-phenonaphthazine (MeO-BPZTPA) have been designed and employed in the fabrication of perovskite solar cells. BPZTPA and MeO-BPZTPA exhibit excellent thermal stabilities, hole mobilities (similar to 10(-4) cm(2)/(V.s)) and suitable HOMO levels (-5.34 and-5.29 eV, respectively) relative to the valence band of the CH3NH3PbI3 and Au work function, showing their potential as alternative hole-transporting materials (HTMs). Meanwhile, the corresponding mesoporous TiO2/CH3NH3PbI3/HTM/Au devices are investigated, and the best power conversion efficiency of 10.36% has been achieved for MeO-BPZTPA without using p-type dopant. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Perovskite solar cell Phenonaphthazine hole-transporting material Triphenylamine derivatives
下载PDF
Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance
11
作者 尹慧丽 赵谡玲 +1 位作者 徐征 孙立志 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期91-94,共4页
We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multila... We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the a11-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance. 展开更多
关键词 of is with QDs Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various hole-transporting Layers on the Performance in PVK PFN on
下载PDF
Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells
12
作者 Guohua Wu Yaohong Zhang +5 位作者 Ryuji Kaneko Yoshiyuki Kojima Ashraful Islam Kosuke Sugawa Joe Otsuki Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期293-298,I0009,共7页
A novel hole-transport material(HTM)based on an anthradithiophene central bridge named BTPA-7 is developed.In comparison to spiro-OMeTAD(2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene),the sy... A novel hole-transport material(HTM)based on an anthradithiophene central bridge named BTPA-7 is developed.In comparison to spiro-OMeTAD(2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene),the synthetic steps of BTPA-7 are greatly reduced from 6 to 3 and the synthetic cost of BTPA-7 is nearly a half that of spiro-OMeTAD.Moreover,BTPA-7 exhibits a relatively lower conductivity but higher hole mobility and higher glass transition temperature(Tg)than spiro-OMeTAD.Compared with the photovolatic performance for spiro-OMeTAD,FA0.85MA0.15PbI3 and MAPbI3 PSC devices based on BTPA-7 exhibit slightly lower PCEs with the values of 17.58%(18.88%for spiro-OMeTAD)and 11.90%(13.25%for spiro-OMeTAD),respectively.Nevertheless,a dramatically higher JSC of PSC based on BTPA-7is achieved,which arises from the higher hole mobility of BTPA-7.In addition,the relatively hydrophobic character of BTPA-7 eventually enhances the PSC device stability.Lower cost,higher hole mobility,higher Tg,satisfactory photovoltaic performance,and superior device stability of BTPA-7 can be utilized as a substitute for spiro-OMeTAD in PSCs. 展开更多
关键词 Anthradithiophene hole-transport material STABILITY Synthetic cost
下载PDF
The donor-dependent methoxy effects on the performance of hole-transporting materials for perovskite solar cells
13
作者 Mengyuan Li Jinhua Wua +5 位作者 Guoguo Wang Bingxue Wu Zhe Sun Song Xue Qiquan Qiao Mao Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期10-17,I0001,共9页
In this work, a comprehensive study on the deliberate molecular design and modifications of electron donors is carried out to elucidate correlations between the methoxy effects and donor configuration of hole-transpor... In this work, a comprehensive study on the deliberate molecular design and modifications of electron donors is carried out to elucidate correlations between the methoxy effects and donor configuration of hole-transporting materials(HTMs). Our initial findings demonstrate the donor-dependent methoxy effects. Photovoltaic performance of the HTM with twisted donor highly depends on the methoxy substituent. In contrast, efficiency’s reliance on methoxy is insignificant for the HTM with planar donor. The HTM(M123) featuring the methoxy–substituted carbazole shows a decent power conversion efficiency of 19.33% due to synergistic effects from both planar structure and methoxy. This work gives a guideline to access HTMs reaching both high-performance and good stability. 展开更多
关键词 hole-transporting materials Donor configuration Methoxy effect Perovskite solar cells
下载PDF
One-Pot Synthesis of Tetraarylpyrrolo[3,2-b]pyrrole Dopant-Free Hole-Transport Materials for Inverted Perovskite Solar Cells
14
作者 Liang-sheng Duan Quan-ping Wu +4 位作者 Yuan-yuan Xu Hui Wang Zhe Sun Yu Chen Song Xue 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第2期217-226,I0002,共11页
Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar ce... Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis.D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures,and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film. 展开更多
关键词 Pyrrole[3 2-b]pyrrole hole-transporting materials Organic small molecules Dopant-free Perovskite solar cells
下载PDF
Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells 被引量:1
15
作者 Nanaji Islavath S Saroja +4 位作者 K Srinivas Reddy P C Harikesh G Veerappan Shrikant V Joshi Easwaramoorthi Ramasamy 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期584-591,共8页
High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this excit... High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phasepure crystalline tetragonal MAPbI;perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO;/MAPbI;/Spiro-OMeTAD/Au achieve opencircuit voltage(990 mV) and short-circuit current density(20.31 mA/cm;) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current–voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMe TAD species, resulting in high seriesresistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs. 展开更多
关键词 PEROVSKITE Ambient processing Solar cell Hole transport Series resistance
下载PDF
Progress in hole-transporting materials for perovskite solar cells 被引量:3
16
作者 Xichuan Yang Haoxin Wang +2 位作者 Bin Cai Ze Yu Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期650-672,共23页
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien... In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs. 展开更多
关键词 Perovskite solar cells Efficient charge extraction Hole transporting materials Recombination losses
下载PDF
Optical and NH<sub>3</sub>Gas Sensing Properties of Hole-Transport Layers Based on PEDOT: PSS Incorporated with Nano-TiO<sub>2</sub>
17
作者 Lam Minh Long Tran Quang Trung +1 位作者 Vo-Van Truong Nguyen Nang Dinh 《Materials Sciences and Applications》 2017年第9期663-672,共10页
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 g... Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged. 展开更多
关键词 PEDOT:PSS+nc-TiO2 Composite UV-VIS Spectra J-V Characteristic Thermal SENSING Property Hole Transport Layer NH3 Gas SENSING
下载PDF
Vanadyl Sulfate Based Hole-Transporting Layer Enables Efficient Organic Solar Cells
18
作者 Mengdi Li Yuqing Sun +3 位作者 Yang Cheng Chaowei Zhao Jicai Zhang Weiwei Li 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第14期1644-1650,共7页
It remains an urgent task to develop alternative hole-transporting layer(HTL)materials beyond commonly used PEDOT:PSS to increase the shelf-life of organic solar cells(OSCs).Inorganic metal oxide type materials,such a... It remains an urgent task to develop alternative hole-transporting layer(HTL)materials beyond commonly used PEDOT:PSS to increase the shelf-life of organic solar cells(OSCs).Inorganic metal oxide type materials,such as NiO_(x),CoO_(x)and VO_(x),with suitable work functions have attracted numerous research attention recently.In this work,more abundant and easily accessible oxygenated salt,vanadyl sulfate(VOSO_(4))has been demonstrated to be excellent choice as HTL for OSCs.The VOSO_(4)-based HTL can be readily processed by spin-coating from the precursor solution with subsequent thermal annealing and UVO treatment.As a consequence,a high power conversion efficiency(PCE)of 18.72%can be achieved for PM8:L8-BO based OSCs with the VOSO_(4)-based HTL.High transmittance,smooth film surface,suitable energy level and high conductivity were revealed to contribute to the high OSC performance.More importantly,compared to device with PEDOT:PSS,VOSO_(4)-based OSCs exhibit improved stability when stored in the N_(2)filled glove box.After being stored for 600 h,VOSO_(4)-based device can retain 89%of its initial efficiency.Notably,VOSO_(4)can be used as general HTL in PM6:BTP-BO-4Cl and PM6:IT-4F based OSCs,yielding high PCEs of 17.87%and 13.85%,respectively. 展开更多
关键词 Organic solar cells SEMICONDUCTORS hole-transporting layers Vanadyl sulfate Power output Efficiency VANADIUM Interfacial modification
原文传递
Copper naphthalocyanine-based hole-transport material for highperformance and thermally stable perovskite solar cells
19
作者 Yue Qiang Huaiman Cao +7 位作者 Yuzhen Pan Yi Chi Liangyu Zhao Yingguo Yang Hai-Bei Li Yan Gao Licheng Sun Ze Yu 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第8期2701-2709,共9页
Metal phthalocyanines(MPcs) have gained considerable research attention as hole-transport materials(HTMs) in perovskite solar cells(PSCs) because of their superb stability. However, the photovoltaic performance of MPc... Metal phthalocyanines(MPcs) have gained considerable research attention as hole-transport materials(HTMs) in perovskite solar cells(PSCs) because of their superb stability. However, the photovoltaic performance of MPc-based HTMs in PSCs is still lagging behind their small molecule and polymeric counterparts, largely due to their relatively low hole mobility. Here, we report for the first time the application of a copper naphthalocyanine derivative(namely t Bu-Cu Nc) as a hole-transport material(HTM)in perovskite solar cells(PSCs), and systematically study its optoelectronic and photovoltaic property compared with its Cu Pc analog(t Bu-Cu Pc). Combined experiments disclose that the extension of π-conjugation from Pc to Nc core leads to not only an enhanced hole-carrier mobility associated with a stronger intermolecular interaction, but also an elevated glass transition temperature(T_g) of 252 °C. The resultant PSCs employing t Bu-Cu Nc deliver an excellent power conversion efficiency of 24.03%, which is the record efficiency reported for metal complex-based HTMs in PSCs. More importantly, the encapsulated t Bu-Cu Nc-based devices also show dramatically improved thermal stability than the devices using the well-known SpiroOMe TAD, with a T_(80)lifetime for more than 1,000 h under damp-heat stress. This study unfolds a new avenue for developing efficient and stable HTMs in PSCs. 展开更多
关键词 hole-transport materials perovskite solar cells copper naphthalocyanine extendedπ-conjugation thermal stability
原文传递
Carbon-based perovskite solar cells with electron and hole-transporting/-blocking layers
20
作者 Wenjin Yu Yu Zou +5 位作者 Shining Zhang Zishi Liu Cuncun Wu Bo Qu Zhijian Chen Lixin Xiao 《Materials Futures》 2023年第2期8-23,共16页
Towards commercialization of perovskite solar cells(PSCs),further reducing the cost and increasing the stability of PSCs have been the most important tasks of researchers,as the efficiency of single-junction PSCs has ... Towards commercialization of perovskite solar cells(PSCs),further reducing the cost and increasing the stability of PSCs have been the most important tasks of researchers,as the efficiency of single-junction PSCs has reached a competitive level among all kinds of single-junction solar cells.Carbon-electrode-based PSCs(CPSCs),as one of the most promising constructions for achieving stable economical PSCs,now attract enormous attention for their cost-effectiveness and stability.Here,we briefly review the development of CPSCs and reveal the importance of n-i-p architecture for state-of-the-art CPSCs.However,despite their promising potential,challenges still exist in CPSCs in the n-i-p architecture,which mainly stem from the incompact contact of the hole-transporting layer(HTL)/carbon electrode.Thus,new carbon materials and/or novel manufacturing methods should be proposed.In addition,HTL is yet to be appropriate for state-of-the-art CPSCs because the fabrication of carbon electrode could result in the destruction of the underlayer.To further enhance the performance of CPSCs,both the HTL and electron transport layer as well as their interfaces with perovskite active layer need to be improved.We recommend that the perovskite active layer,with its long carrier lifetime,strong carrier transport capability,and long-term stability,is necessary as well for improved performance of CPSCs.We also highlight current researches on CPSCs and provide a systematic review of various types of regulation tools. 展开更多
关键词 carbon-electrode-based PSCs n-i-p architecture electron transport layer hole-transporting layer interface
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部