The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed...In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed by utilizing the finite element method.The corresponding material,displacement and stress distributions are evaluated for different values of nr and nz.Moreover,the effects of different material property distributions on the effective stress with respect to the metallic phase volume fraction are investigated.It is demonstrated that the increase in nr and V_m leads to a significant reduction in the effective stress.Finally,it is shown that the ceramic phase rich cylinder wall has lower maximum effective stresses of which the lowest value of effective stress has been evaluated for nr=20 and nz=5.This minimum value is about half the maximum effective stress which has been evaluated for the non-FGM cylinder case(nr=nz=0.1).展开更多
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
文摘In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed by utilizing the finite element method.The corresponding material,displacement and stress distributions are evaluated for different values of nr and nz.Moreover,the effects of different material property distributions on the effective stress with respect to the metallic phase volume fraction are investigated.It is demonstrated that the increase in nr and V_m leads to a significant reduction in the effective stress.Finally,it is shown that the ceramic phase rich cylinder wall has lower maximum effective stresses of which the lowest value of effective stress has been evaluated for nr=20 and nz=5.This minimum value is about half the maximum effective stress which has been evaluated for the non-FGM cylinder case(nr=nz=0.1).