The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane cont...Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.展开更多
Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure wa...Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly.展开更多
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow ...A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not he neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of d1/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.展开更多
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t...Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.展开更多
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluro...Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluronic F127, has been used as both a pore-former and a surface-modifier in the fabrication of PVDF hollow fibermembranes to enhance the membrane permeability and hydrophilicity. The effects of 2nd additive and coagulant temperature on the formation of PVDF/Pluronic F 127 membranes have also been investigated. The as-spun hollow fibers were characterized in terms of cross-sectional morphology, pure water permeation (PWP), relative molecular mass cut-off (MWCO), membrane chemistry, and hydrolphilicity. It was obsered that the addition of Pluronic F 127 significantly increased the PWP of as-spun fibers, while the membrane contact angle was reduced. However, the size of macrovoids in the membranes was undesirably large. The addition of a 2nd additive, including lithium chloride (LiC1) and water, or an increase in coagulant temperature was found to effectively suppress the macrovoid for- mation in the Pluronic-containing membranes. In addition, the use of LiC1 as a 2nd additive also further enhanced the PWP and hydrophilicity of the membranes, while the surface pore size became smaller. PVDF hollow fiber with a PWP as high as 2330 L·m-2·h-1·MPa-1, a MWCO of 53000 and'a contact angle of 71 o was successfully fabricated with 3% (by mass) of Pluronic F127 and 3% (by mass) of LiC1 at a coagulant temperature of 25 ℃, which shows better performance as compared with most of PVDF hollow fiber membranes made by NIPS method.展开更多
Porous polyvinylidene fluoride-co-hexafluropropylene(PVDF-HFP)hollow fiber membranes were fabricated through a wet spinning process.In order to improve the membrane structure,composition of the polymer solution was ad...Porous polyvinylidene fluoride-co-hexafluropropylene(PVDF-HFP)hollow fiber membranes were fabricated through a wet spinning process.In order to improve the membrane structure,composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent.The prepared membranes were used for sweeping gas membrane distillation(SGMD)of 20 wt% ethylene glycol(EG)aqueous solution.The membranes were characterized by different tests such as N2 permeation,overall porosity,critical water entry pressure(CEPw),water contact angle and collapsing pressure.From FESEM examination,addition of 3 wt% glycerol in the PVDF-HFP solution,produced membranes with smaller finger-likes cavities,higher surface porosity and smaller pore sizes.Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance.The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m^−1.CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane.Collapsing pressure of the membranes relatively improved by increasing the polymer concentration.From the SGMDtest,the developed membrane represented a maximumpermeate flux of 28 kg·m^−2·h^−1 which is almost 19% higher than the flux of plain membrane.During 120 h of a long-termSGMD operation,a gradual flux reduction of 30% was noticed.In addition,EG rejection reduced from 100% to around 99.5% during 120 h of the operation.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes ...Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.展开更多
Microporous polyolefin hollow fiber membranes were prepared from high density polyethylene (HDPE)-paraffin solution via thermally induced phase separation (TIPS) method. Effects of extraction and cold-drawing cond...Microporous polyolefin hollow fiber membranes were prepared from high density polyethylene (HDPE)-paraffin solution via thermally induced phase separation (TIPS) method. Effects of extraction and cold-drawing condition on membrane structure and performance were investigated.Five volatile solvents were used as extractant. Dimension of hollow fiber and gas permeation rate of membrane were measured. Mierostructure of membrane was examined by Scanning Electronic Microscope (SEM). The results show that the membrane treated by pentane possesses a higher porosity, nitrogen permeability and lower shrinkage than those of membranes extracted by other three extractants. It is also found that the membrane stretched 133% shows the highest porosity and gas permeability in this study.展开更多
Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In ...Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In this work,an approximate mathematical model was developed and wasexperimentally verified for high stage cut air separation.Both countercurrent and cocurrent now pat-terns were used.In addition,the applicability of feed-inside mode for low stage cut air separation byhollow fiber membrane was examined.It was found that feed-inside mods was more advantageousthan feed-outside mode when used for the generation of oxygen-enriched air.展开更多
A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical e...A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties.展开更多
The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of ...The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.展开更多
Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimet...Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimethylsiloxane(PVDMS)was formed on the surface of porous PVDF hollow fibers.The structural parameters of PVDFsubstrate membrane were estimated by gas permeation test.Using N_2/O_2 as the medium,the separation properties ofPVDMS-PVDF composite hollow fiber membranes were also evaluated experimentally.The experimental data of bothpermeability and selectivity are in good agreement with the theoretical results predicted by the presented pore-distributionmodel.In order to obtain the compact composite membrane free of defects by the dip-coating technique,the thickness ofPVDMS skin must be higher than 5 μm.展开更多
The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH...The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.展开更多
A 4,4'-( hexafluoroisopropylidene ) diphthalic anhydride- bis [ 4-( 4-aminophenoxy ) phenyl J sulfone ( 6FDA-BAPS) polyamic acid (PAA) was synthesized by using 6FDA and BAPS as reactive monomers and N-methyl-...A 4,4'-( hexafluoroisopropylidene ) diphthalic anhydride- bis [ 4-( 4-aminophenoxy ) phenyl J sulfone ( 6FDA-BAPS) polyamic acid (PAA) was synthesized by using 6FDA and BAPS as reactive monomers and N-methyl-2-pyrrolidone(NMP) as a solvent. The PAA solution was prepared into membranes by casting technology and was also prepared into PAAhollow fiber membranes by dry wet spinning process. The PAA membranes and PAA hollow fiber membranes were exposed tothe high-temperature thermal cyclization at about 300 ℃ to produce a 6FDA-BAPS polyimide (PI) membranes and hollow fibermembranes. The structure and properties of 6FDA-BAPS PI products were studied. The results showed that the obtained 6FDA-BAPS PI was the target product which was of fairly good solubility in NMP, dimethylaeetamide and tetrahydrofuran ;the 6FDA-BAPS PI possessed the dense outer layer and the loose and porous support layer;the hollow fiber membranes had the 5 % weightloss temperature of 511 ℃ and breaking strength 26.5 MPa, indicating relatively high thermal and mechanical properties.展开更多
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin...[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.展开更多
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.
基金the financial support from Dalian Institute of Chemical Physics (DMTO201604)Focus Area Innovation Team Support Plan of Dalian (2021RT03)+1 种基金National Natural Science Foundation of China (21878284)Regional Development Young Scholars of the Chinese Academy of Sciences。
文摘Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.
文摘Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly.
基金Supported by the National Natural Science Foundation of China(21490585 and21776128)the National High-tech R&D Program of China(2015AA03A602)+1 种基金the"Six Top Talents"and"333 Talent Project"of Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not he neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of d1/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59833120).
文摘Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.
文摘Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluronic F127, has been used as both a pore-former and a surface-modifier in the fabrication of PVDF hollow fibermembranes to enhance the membrane permeability and hydrophilicity. The effects of 2nd additive and coagulant temperature on the formation of PVDF/Pluronic F 127 membranes have also been investigated. The as-spun hollow fibers were characterized in terms of cross-sectional morphology, pure water permeation (PWP), relative molecular mass cut-off (MWCO), membrane chemistry, and hydrolphilicity. It was obsered that the addition of Pluronic F 127 significantly increased the PWP of as-spun fibers, while the membrane contact angle was reduced. However, the size of macrovoids in the membranes was undesirably large. The addition of a 2nd additive, including lithium chloride (LiC1) and water, or an increase in coagulant temperature was found to effectively suppress the macrovoid for- mation in the Pluronic-containing membranes. In addition, the use of LiC1 as a 2nd additive also further enhanced the PWP and hydrophilicity of the membranes, while the surface pore size became smaller. PVDF hollow fiber with a PWP as high as 2330 L·m-2·h-1·MPa-1, a MWCO of 53000 and'a contact angle of 71 o was successfully fabricated with 3% (by mass) of Pluronic F127 and 3% (by mass) of LiC1 at a coagulant temperature of 25 ℃, which shows better performance as compared with most of PVDF hollow fiber membranes made by NIPS method.
文摘Porous polyvinylidene fluoride-co-hexafluropropylene(PVDF-HFP)hollow fiber membranes were fabricated through a wet spinning process.In order to improve the membrane structure,composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent.The prepared membranes were used for sweeping gas membrane distillation(SGMD)of 20 wt% ethylene glycol(EG)aqueous solution.The membranes were characterized by different tests such as N2 permeation,overall porosity,critical water entry pressure(CEPw),water contact angle and collapsing pressure.From FESEM examination,addition of 3 wt% glycerol in the PVDF-HFP solution,produced membranes with smaller finger-likes cavities,higher surface porosity and smaller pore sizes.Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance.The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m^−1.CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane.Collapsing pressure of the membranes relatively improved by increasing the polymer concentration.From the SGMDtest,the developed membrane represented a maximumpermeate flux of 28 kg·m^−2·h^−1 which is almost 19% higher than the flux of plain membrane.During 120 h of a long-termSGMD operation,a gradual flux reduction of 30% was noticed.In addition,EG rejection reduced from 100% to around 99.5% during 120 h of the operation.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China
文摘Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.
基金Supported by Zhejiang Natural Science Foundation (ZJNSF Y404096) and SRF for ROCS ,SEM
文摘Microporous polyolefin hollow fiber membranes were prepared from high density polyethylene (HDPE)-paraffin solution via thermally induced phase separation (TIPS) method. Effects of extraction and cold-drawing condition on membrane structure and performance were investigated.Five volatile solvents were used as extractant. Dimension of hollow fiber and gas permeation rate of membrane were measured. Mierostructure of membrane was examined by Scanning Electronic Microscope (SEM). The results show that the membrane treated by pentane possesses a higher porosity, nitrogen permeability and lower shrinkage than those of membranes extracted by other three extractants. It is also found that the membrane stretched 133% shows the highest porosity and gas permeability in this study.
文摘Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In this work,an approximate mathematical model was developed and wasexperimentally verified for high stage cut air separation.Both countercurrent and cocurrent now pat-terns were used.In addition,the applicability of feed-inside mode for low stage cut air separation byhollow fiber membrane was examined.It was found that feed-inside mods was more advantageousthan feed-outside mode when used for the generation of oxygen-enriched air.
文摘A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties.
文摘The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained.
基金This work was supported by the National Natural Science Foundation of China(No.20076025).
文摘Microporous polyvinylidene fluoride(PVDF)hollow fibre membranes were spun using the dry-wet phaseinversion method.By means of dip-coating technique,a uniform coating with thickness of around 5-12 μm of polyvinyldimethylsiloxane(PVDMS)was formed on the surface of porous PVDF hollow fibers.The structural parameters of PVDFsubstrate membrane were estimated by gas permeation test.Using N_2/O_2 as the medium,the separation properties ofPVDMS-PVDF composite hollow fiber membranes were also evaluated experimentally.The experimental data of bothpermeability and selectivity are in good agreement with the theoretical results predicted by the presented pore-distributionmodel.In order to obtain the compact composite membrane free of defects by the dip-coating technique,the thickness ofPVDMS skin must be higher than 5 μm.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(CL11096)supported by the Undergraduate Innovation Training Foundation of Central South University,ChinaProject(BL12053)supported by the Undergraduate Innovation Training Foundation of Hunan Province,China
文摘The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.
文摘A 4,4'-( hexafluoroisopropylidene ) diphthalic anhydride- bis [ 4-( 4-aminophenoxy ) phenyl J sulfone ( 6FDA-BAPS) polyamic acid (PAA) was synthesized by using 6FDA and BAPS as reactive monomers and N-methyl-2-pyrrolidone(NMP) as a solvent. The PAA solution was prepared into membranes by casting technology and was also prepared into PAAhollow fiber membranes by dry wet spinning process. The PAA membranes and PAA hollow fiber membranes were exposed tothe high-temperature thermal cyclization at about 300 ℃ to produce a 6FDA-BAPS polyimide (PI) membranes and hollow fibermembranes. The structure and properties of 6FDA-BAPS PI products were studied. The results showed that the obtained 6FDA-BAPS PI was the target product which was of fairly good solubility in NMP, dimethylaeetamide and tetrahydrofuran ;the 6FDA-BAPS PI possessed the dense outer layer and the loose and porous support layer;the hollow fiber membranes had the 5 % weightloss temperature of 511 ℃ and breaking strength 26.5 MPa, indicating relatively high thermal and mechanical properties.
基金Supported by Sichuan Provincial International S&T Cooperation Program(No.2008HH0012)Cooperation Research Program of Sichuan University and Hitachi Company(No.07H372)~~
文摘[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.