The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow...The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow nanofibers using a simple electrospinning and thermal treatment method.The hierarchical hollow nanofiber is composed of a nitrogen-doped carbon-coated NiS_(1.03) tube wall,in which pea-like uniformly discrete MoS_(2) nanoparticles are enclosed.As a sodium-ion battery electrode material,the MoS_(2)@NiS_(1.03)-carbon hollow nanofibers have abundant diphasic heterointerfaces,a conductive network,and appropriate volume variation-buffering spaces,which can facilitate ion diffusion kinetics,shorten the diffusion path of electrons/ion,and buffer volume expansion during Na^(+)insertion/extraction.It shows outstanding rate capacity and long-cycle performance in a sodium-ion battery.This heterogeneous hollow nanoarchitectures designing enlightens an efficacious strategy to boost the capacity and long-life stability of sodium storage performance of electrode materials.展开更多
One-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In_(2)O_(3) (Cu-In_(2)O_(3...One-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In_(2)O_(3) (Cu-In_(2)O_(3)) hollow nanofibers by electrospinning and calcination for detecting H2S. The experimental results show that the Cu doping concentration besides the operating temperature, gas concentration, and relative humidity can greatly affect the H2S sensing performance of the In_(2)O_(3)-based sensors. In particular, the responses of 6%Cu-In_(2)O_(3) hollow nanofibers are 350.7 and 4201.5 to 50 and 100 ppm H2S at 250 ℃, which are over 20 and 140 times higher than those of pristine In_(2)O_(3) hollow nanofibers, respectively. Moreover, the corresponding sensor exhibits excellent selectivity and good reproducibility towards H2S, and the response of 6%Cu-In_(2)O_(3) is still 1.5 to 1 ppm H2S. Finally, the gas sensing mechanism of Cu-In_(2)O_(3) hollow nanofibers is thoroughly discussed, along with the assistance of first-principles calculations. Both the formation of hollow structure and Cu doping contribute to provide more active sites, and meanwhile a little CuO can form p–n heterojunctions with In_(2)O_(3) and react with H2S, resulting in significant improvement of gas sensing performance. The Cu-In_(2)O_(3) hollow nanofibers can be tailored for practical application to selectively detect H2S at lower concentrations.展开更多
Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film el...Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film electrodes.Here we develop a porous,nitrogenenriched,freestanding hollow carbon nanofiber(PNFHCF)electrode material via filtration of polypyrrole(PPy)hollow nanofibers formed by in situ selfdegraded templateassisted strategy,followed by NH3assisted carbonization.The PNFHCF retains the freestanding film morphology that is composed of threedimensional networks from the entanglement of 1D nanofiber and delivers 3.7fold increase in specific surface area(592 m^(2)g^(-1))compared to the carbon without NH_(3)treatment(FHCF).In spite of the enhanced specific surface area,PNFHCF still exhibits comparable high content of surface N functionalities(8.8%,atom fraction)to FHCF.Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity,highrate property and good cycling stability when applied as selfsupporting anode in lithiumion batteries,superior to those of FHCF without NH3 treatment.展开更多
Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polys...Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li^+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA.h.g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g^-1), respectively), and a stable reversible capacity of 847 mA·h·g^-1 after 300 cycles at a high rate of 2.0 C.展开更多
SnS has been extensively investigated as a potential anode material in potassium-ion batteries (PIBs) for its high theoretical capacity.Nonetheless,it suffers a limited cyclic lifespan owing to its poor electronic con...SnS has been extensively investigated as a potential anode material in potassium-ion batteries (PIBs) for its high theoretical capacity.Nonetheless,it suffers a limited cyclic lifespan owing to its poor electronic conductivity and huge volume expansion.This work proposed a facile approach where SnS nanocrystals are confined in the walls of hollow multichannel carbon nanofibers (denoted SnS@HMCFs) to tackle the issues above.In contrast to previous studies,impregnated ultrafine SnS nanocrystals in HMCFs compactly can increase the SnS loading number per unit area of the carbon matrix.Furthermore,the unique hollow multichannel carbon nanofibers are used as a robust carrier to uniformly distribute the SnS nanocrystals.This can significantly accelerate K;/electron transport,resulting in large specific capacity,outstanding rate performance,and steady cycling property for PIBs.High reversible capacities of 415.5 mAh g^(-1)at0.1 A g^(-1)after 300 cycles and 245.5 mAh g^(-1)at 1 A g^(-1)after 1000 cycles are retained,suggesting great potential of SnS@HMCFs as a negative electrode material for PIBs.Additionally,when the SnS@HMCF anode is assembled with the KVPO_(4)F cathode,the obtained full cell shows a large discharge capacity of165.3 m Ah g^(-1)after 200 cycles at 0.1 A g^(-1).展开更多
Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(ac rylo n it ...Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(ac rylo n it rile-co-β-methyl hydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers(HCNFs) via an electrospinning method without breaking after multiple bending.Subsequently,the inner and outer surfaces of HCNFs were evenly covered with ordered needlelike polyaniline(PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites,which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability(90.1% retention at 5 A/g after 3000 cycles).The symmetrical supercapacitor based on the HCNFs/PANI composites also delive red an outsta nding electrochemical performance with high energy/power density(60.28 Wh/kg at 1000 W/kg) and superior cycling durability(90% capacitance retention after at 5 A/g3000 cycles),which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.展开更多
Lead ion(Pb^(2+))is one of the most hazardous heavy metal ions in aquatic environments.Carbon materials and manganese dioxide(MnO_(2))have been shown to be prospective adsorbents to cope with the lead pollution.In thi...Lead ion(Pb^(2+))is one of the most hazardous heavy metal ions in aquatic environments.Carbon materials and manganese dioxide(MnO_(2))have been shown to be prospective adsorbents to cope with the lead pollution.In this study,a novel hollow carbon@MnO_(2) composite nanofiber adsorbent was prepared by the combination of electrospinning and carbonization.The PAN nanofiber membrane is subjected to a pre-oxidation and carbonization process,and then the obtained carbon nanofibers react with KMnO4 solution during the hydrothermal process to develop the hollow carbon@MnO_(2) nanofibers.The hollow carbon@MnO_(2) nanofibers displayed a higher adsorption capacity of Pb^(2+)than carbon and MnO_(2)/PDA/PAN nanofibers.The maximum adsorption capacity toward Pb^(2+)by hollow carbon@MnO_(2) nanofibers was 460.83 mg/g.After 5 adsorption-desorption cycles,the carbon@MnO_(2) nanofibers had a good recyclability and the removal efficiency remained 81.47%.Moreover,the removal efficiency of the hollow composite nanofibers for Pb^(2+)from real wastewater could reach 94.37%.This work shows a strategy for synthetics of the hollow carbon@MnO_(2) nanofibers,which exhibits a promising potential in actual wastewater treatment.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.22175007,21975007,52172080,and 22005012)the National Natural Science Foundation for Outstanding Youth Foundation,the Fundamental Research Funds for the Central Universities,the National Program for Support of Top-notch Young Professionalsthe 111 project(Grant No.B14009).
文摘The rational synergy of chemical composition and spatial nanostructures of electrode materials play important roles in high-performance energy storage devices.Here,we designed pea-like MoS_(2)@NiS_(1.03)-carbon hollow nanofibers using a simple electrospinning and thermal treatment method.The hierarchical hollow nanofiber is composed of a nitrogen-doped carbon-coated NiS_(1.03) tube wall,in which pea-like uniformly discrete MoS_(2) nanoparticles are enclosed.As a sodium-ion battery electrode material,the MoS_(2)@NiS_(1.03)-carbon hollow nanofibers have abundant diphasic heterointerfaces,a conductive network,and appropriate volume variation-buffering spaces,which can facilitate ion diffusion kinetics,shorten the diffusion path of electrons/ion,and buffer volume expansion during Na^(+)insertion/extraction.It shows outstanding rate capacity and long-cycle performance in a sodium-ion battery.This heterogeneous hollow nanoarchitectures designing enlightens an efficacious strategy to boost the capacity and long-life stability of sodium storage performance of electrode materials.
基金This work was supported by the Key Research and Development Plan(BE2019094)Qing Lan Project([2016]15)+1 种基金Six Talent Peaks Project(TD-XCL-004)Graduate Research and Innovation Projects(5561220038)of Jiangsu Province.
文摘One-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In_(2)O_(3) (Cu-In_(2)O_(3)) hollow nanofibers by electrospinning and calcination for detecting H2S. The experimental results show that the Cu doping concentration besides the operating temperature, gas concentration, and relative humidity can greatly affect the H2S sensing performance of the In_(2)O_(3)-based sensors. In particular, the responses of 6%Cu-In_(2)O_(3) hollow nanofibers are 350.7 and 4201.5 to 50 and 100 ppm H2S at 250 ℃, which are over 20 and 140 times higher than those of pristine In_(2)O_(3) hollow nanofibers, respectively. Moreover, the corresponding sensor exhibits excellent selectivity and good reproducibility towards H2S, and the response of 6%Cu-In_(2)O_(3) is still 1.5 to 1 ppm H2S. Finally, the gas sensing mechanism of Cu-In_(2)O_(3) hollow nanofibers is thoroughly discussed, along with the assistance of first-principles calculations. Both the formation of hollow structure and Cu doping contribute to provide more active sites, and meanwhile a little CuO can form p–n heterojunctions with In_(2)O_(3) and react with H2S, resulting in significant improvement of gas sensing performance. The Cu-In_(2)O_(3) hollow nanofibers can be tailored for practical application to selectively detect H2S at lower concentrations.
基金the National Natural Science Foundation of China(51972270,51702262,51911530212,51872240,51672225,61805201)the China Postdoctoral Science Foundation(2018T111093,2018M643732,2018BSHYDZZ57)+3 种基金the Natural Science Foundation of Shaanxi Province(2020JZ-07)the Key Research and Development Program of Shaanxi Province(2019TSLGY07-03)the Fundamental Research Funds for the Central Universities(3102019JC005 and 3102019ghxm004)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2019-QZ-03).
文摘Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film electrodes.Here we develop a porous,nitrogenenriched,freestanding hollow carbon nanofiber(PNFHCF)electrode material via filtration of polypyrrole(PPy)hollow nanofibers formed by in situ selfdegraded templateassisted strategy,followed by NH3assisted carbonization.The PNFHCF retains the freestanding film morphology that is composed of threedimensional networks from the entanglement of 1D nanofiber and delivers 3.7fold increase in specific surface area(592 m^(2)g^(-1))compared to the carbon without NH_(3)treatment(FHCF).In spite of the enhanced specific surface area,PNFHCF still exhibits comparable high content of surface N functionalities(8.8%,atom fraction)to FHCF.Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity,highrate property and good cycling stability when applied as selfsupporting anode in lithiumion batteries,superior to those of FHCF without NH3 treatment.
基金This work was supported by the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21225312 and 21376047), and Cheung Kong Scholars Program of China (No. T2015036).
文摘Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li^+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1,170, 1,050, and 860 mA.h.g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g^-1), respectively), and a stable reversible capacity of 847 mA·h·g^-1 after 300 cycles at a high rate of 2.0 C.
基金supported by the National Natural Science Foundation of China(22179063 and 22075147)。
文摘SnS has been extensively investigated as a potential anode material in potassium-ion batteries (PIBs) for its high theoretical capacity.Nonetheless,it suffers a limited cyclic lifespan owing to its poor electronic conductivity and huge volume expansion.This work proposed a facile approach where SnS nanocrystals are confined in the walls of hollow multichannel carbon nanofibers (denoted SnS@HMCFs) to tackle the issues above.In contrast to previous studies,impregnated ultrafine SnS nanocrystals in HMCFs compactly can increase the SnS loading number per unit area of the carbon matrix.Furthermore,the unique hollow multichannel carbon nanofibers are used as a robust carrier to uniformly distribute the SnS nanocrystals.This can significantly accelerate K;/electron transport,resulting in large specific capacity,outstanding rate performance,and steady cycling property for PIBs.High reversible capacities of 415.5 mAh g^(-1)at0.1 A g^(-1)after 300 cycles and 245.5 mAh g^(-1)at 1 A g^(-1)after 1000 cycles are retained,suggesting great potential of SnS@HMCFs as a negative electrode material for PIBs.Additionally,when the SnS@HMCF anode is assembled with the KVPO_(4)F cathode,the obtained full cell shows a large discharge capacity of165.3 m Ah g^(-1)after 200 cycles at 0.1 A g^(-1).
基金supported by Fundamental Research Funds for the Central Universities (No.2232019A3-11)National Natural Science Foundation of China (No.51503086)+1 种基金Zhejiang Provincial Natural Science Foundation (No.LQ19E030014)Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province (No.MTC2019-13)。
文摘Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(ac rylo n it rile-co-β-methyl hydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers(HCNFs) via an electrospinning method without breaking after multiple bending.Subsequently,the inner and outer surfaces of HCNFs were evenly covered with ordered needlelike polyaniline(PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites,which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability(90.1% retention at 5 A/g after 3000 cycles).The symmetrical supercapacitor based on the HCNFs/PANI composites also delive red an outsta nding electrochemical performance with high energy/power density(60.28 Wh/kg at 1000 W/kg) and superior cycling durability(90% capacitance retention after at 5 A/g3000 cycles),which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.
基金This work was supported by the National Natural Science Foundation of China(No.51773082).
文摘Lead ion(Pb^(2+))is one of the most hazardous heavy metal ions in aquatic environments.Carbon materials and manganese dioxide(MnO_(2))have been shown to be prospective adsorbents to cope with the lead pollution.In this study,a novel hollow carbon@MnO_(2) composite nanofiber adsorbent was prepared by the combination of electrospinning and carbonization.The PAN nanofiber membrane is subjected to a pre-oxidation and carbonization process,and then the obtained carbon nanofibers react with KMnO4 solution during the hydrothermal process to develop the hollow carbon@MnO_(2) nanofibers.The hollow carbon@MnO_(2) nanofibers displayed a higher adsorption capacity of Pb^(2+)than carbon and MnO_(2)/PDA/PAN nanofibers.The maximum adsorption capacity toward Pb^(2+)by hollow carbon@MnO_(2) nanofibers was 460.83 mg/g.After 5 adsorption-desorption cycles,the carbon@MnO_(2) nanofibers had a good recyclability and the removal efficiency remained 81.47%.Moreover,the removal efficiency of the hollow composite nanofibers for Pb^(2+)from real wastewater could reach 94.37%.This work shows a strategy for synthetics of the hollow carbon@MnO_(2) nanofibers,which exhibits a promising potential in actual wastewater treatment.