Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element...The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.展开更多
Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse ...Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.展开更多
Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump po...Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump power and wavelength on the CR are investigated, and the corresponding nonlinear processes are discussed. When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW, the Raman soliton shifts from 2210 nm to 2360 nm, the output power of the CR increases by 2.3 times, the maximum output power ratio of the CR at 539 nm to that of the residual pump is calculated to be 24.32:1, the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm, and the conversion efficiency η of the CR in the experiment can be above 32%.展开更多
Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band ...Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.展开更多
The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave...The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.展开更多
This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut...This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.展开更多
We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light s...We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.展开更多
Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated ...Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated from 0° to 45°, the Raman soliton shifts from 2227 to 2300 nm, the output power of the CR increases 8.15 times, and the maximum output power ratio of the CR at 556 nm to the residual pump is estimated to be 20:1. The width of the output optical spectrum at visible wavelengths broadens from 25 to 45 nm, and the conversion efficiency of the CR can be above 28%. Moreover, the influences of the pump polarization and wavelength on the CR are studied, and the corresponding nonlinear processes are discussed.展开更多
Cooling crystallization is an important separation process and particuology technology that requires accurate nucleation control strategies.Herein,we introduced the polymeric hollow fiber membrane with proper thermal ...Cooling crystallization is an important separation process and particuology technology that requires accurate nucleation control strategies.Herein,we introduced the polymeric hollow fiber membrane with proper thermal properties as the effective nucleation induction interface during cooling crystallization.The heterogeneous nucleation control mechanism was introduced based on classical nucleation theory and the thermal transfer process.Interfacial properties and the thermal conductivity of two kinds of polymeric membranes,polytetrafluoroethylene(PTFE)and polyethersulfone(PES),were measured and simulated with the developed model.These two membranes possessed different nucleation induction periods,nucleation rates and crystallization performances,which validated that the hollow fiber membrane module could effectively accelerate the nucleation process compared to conventional cooling crystallization owing to the shorter nucleation induction period and the reduced solution surface tension.Due to the higher hydrophobicity and the lower roughness of the membrane surface,the PTFE membrane possessed a more moderate performance in generating stable heterogeneous nucleation than the one of PES membrane.Thus,the adjustable membrane property enabled the hollow fiber membrane-assisted cooling crystallization to possess the accurate nucleation control and desired terminal particle products.展开更多
Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were ar...Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were around 200 nm with a wall thickness of about 20 nm. To investigate the influence factors and formation mechanism of the hollow octahedral structure, samples subjected to different reaction conditions were studies. The results showed that the morphology and structures of Cu20 particles were greatly affected by the concentration of pH value of the reaction environment and the reaction time. Ostwald ripening process is orooosed to exolain the growth mechanism of the hollow octahedral nanostructures.展开更多
Using brighten white and modified PET chips, fine denier hollow fibres (dpf=0.5~1.5) were prepared on a Fuji Filter MSTC-400 and VC-443A drawn machine, whose structure and properties were tested by X-ray diffraction ...Using brighten white and modified PET chips, fine denier hollow fibres (dpf=0.5~1.5) were prepared on a Fuji Filter MSTC-400 and VC-443A drawn machine, whose structure and properties were tested by X-ray diffraction mater, SOM-II sonic velocity meter and Instron-1122 Tensile tester, electron and light microscopy etc,. The results show: fine denier hollow taken-up yarns prepared at low spinning velocity have radial orientation, higher strength and elongation at rupture because radial stress is higher than normal stress. Fine denier hollow drawn yarns with hollow degree up to 18~35% and high tenacity, together with high crystalline degree and small crystal and amorphous domains, can be empolyed as products.展开更多
The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a hi...The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.展开更多
In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the pr...In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.展开更多
The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at ca...The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.展开更多
In order to investigate the rules on preparation of titanium silicalite (TS-1) the ^1H →^13C CP/ MAS NMR spectrometers were applied to track the function of template TPAOH in the process of crystallization of titan...In order to investigate the rules on preparation of titanium silicalite (TS-1) the ^1H →^13C CP/ MAS NMR spectrometers were applied to track the function of template TPAOH in the process of crystallization of titanium silicalite. The research results revealed that at the initial stage of crystallization the TPA+ ions acting as the template could predominantly absorb the polymers of negatively charged silicatitania sol and the interactions between silica sol and titania sol could gradually lead to the formation of tiny crystal nuclei that could slowly grow up to form molecular sieves. Upon investigating the course of crystallization of titanium silicalite the ^1H →^13C CP/MAS NMR spectrometers were applied to effectively enhance the resolution of 29Si signals in the titanium silicalite. Study results have shown that during the formation of tiny crystal nuclei upon interaction between titania sol and silica sol the influence of titania sol on the silica sol was insignificant. However, when tiny crystal nuclei broke out into molecular sieves the titania sol could enter the zeolite framework that could apparently impose an enhanced effect on the silica sol.展开更多
This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretica...This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.展开更多
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.
文摘The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2003CB314905)the National High Technology Development Program of China (Grant No 2003AA311010)
文摘Two kinds of fabricated hollow-core photonic crystal fibres (HC-PCFs) arc studied using finite element method (FEM) because the structures of the fibres are special, Normalized transmission spectra and transverse intensity distribution of the modes are calculated and measured. And the dispersion characteristics of these two kinds of HC- PCFs were analysed from 400 nm to 800 nm. Simulated and measured results show that the special structure could affect the properties of HC-PCFs, By comparing the simulated values with the measured results, it can be clarified that FEM is feasible and accurate for analysing photonic crystal fibres whose structures are irregular and complex.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328300)the Fundamental Research Funds for the Central Universities,China (Grant Nos. 2011RC0309 and 2011RC008)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications,China (Grant No. CX201023)
文摘Highly efficient Cherenkov radiation (CR) is generated by the soliton self-frequency shift (SSFS) in the irregular point of a hollow-core photonic crystal fiber (HC-PCF) in our laboratory. The impacts of pump power and wavelength on the CR are investigated, and the corresponding nonlinear processes are discussed. When the average power of the 120 fs pump pulse increases from 500 mW to 700 mW, the Raman soliton shifts from 2210 nm to 2360 nm, the output power of the CR increases by 2.3 times, the maximum output power ratio of the CR at 539 nm to that of the residual pump is calculated to be 24.32:1, the width of the output optical spectrum at the visible wavelength broadens from 35 nm to 62 nm, and the conversion efficiency η of the CR in the experiment can be above 32%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10864009)the Natural Science Foundation of Yunnan Province,China (Grant No. 2008CD109)the State Key Program of the National Natural Science of China (Grant No. 50734007)
文摘Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.
基金Project supported by the National Natural Science Foundation of China(Grant No.60977032)
文摘The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.10874145)the Specialized Research Fund for Doctorial Program of Higher Education(Grant No.20091333110010)+1 种基金the Natural Science Foundation of Heibei Province, China(Grant No.F2009000481)the China Postdoctoral Science Foundation(Grant Nos.20080440014 and 200902046)
文摘This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674051 and 10811120010)the Program for Innovative Research Team of the Higher Education of Guangdong, China (Grant No 06CXTD005)
文摘We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328300)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 2011RC0309 and 2011RC008)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023)
文摘Efficient Cherenkov radiation (CR) is experimentally generated by a soliton self-frequency shift (SSFS) in a knot of hollow-core photonic crystal fiber (HC-PCF). When the angle of the half-wave plate is rotated from 0° to 45°, the Raman soliton shifts from 2227 to 2300 nm, the output power of the CR increases 8.15 times, and the maximum output power ratio of the CR at 556 nm to the residual pump is estimated to be 20:1. The width of the output optical spectrum at visible wavelengths broadens from 25 to 45 nm, and the conversion efficiency of the CR can be above 28%. Moreover, the influences of the pump polarization and wavelength on the CR are studied, and the corresponding nonlinear processes are discussed.
基金support from National Natural Science Foundation of China(grant No.22021005,22378041)National Key Research and Development Program of China(grant No.2021YFC2901300)+3 种基金Central Guidance on Local Science and Technology Development Fund of Liaoning Province(grant No.2023JH6/100100004)Fundamental Research Fundamental Funds for the Central Universities(grant No.DUT22LAB603,DUT22QN209)Key Research and Development Projects in Shandong Province(grant No.2022CXGC010303)acknowledge the assistance of DUT Instrumental Analysis Center.
文摘Cooling crystallization is an important separation process and particuology technology that requires accurate nucleation control strategies.Herein,we introduced the polymeric hollow fiber membrane with proper thermal properties as the effective nucleation induction interface during cooling crystallization.The heterogeneous nucleation control mechanism was introduced based on classical nucleation theory and the thermal transfer process.Interfacial properties and the thermal conductivity of two kinds of polymeric membranes,polytetrafluoroethylene(PTFE)and polyethersulfone(PES),were measured and simulated with the developed model.These two membranes possessed different nucleation induction periods,nucleation rates and crystallization performances,which validated that the hollow fiber membrane module could effectively accelerate the nucleation process compared to conventional cooling crystallization owing to the shorter nucleation induction period and the reduced solution surface tension.Due to the higher hydrophobicity and the lower roughness of the membrane surface,the PTFE membrane possessed a more moderate performance in generating stable heterogeneous nucleation than the one of PES membrane.Thus,the adjustable membrane property enabled the hollow fiber membrane-assisted cooling crystallization to possess the accurate nucleation control and desired terminal particle products.
基金Funded by the Fundamental Research Funds for the Central Universities (No.123201003)
文摘Homogeneous hollow Cu20 octahedral nanostructures have been fabricated by a facile onepot reduction reaction at roomtemperature. The microscope analysis revealed that the edges of as-prepared hollow structures were around 200 nm with a wall thickness of about 20 nm. To investigate the influence factors and formation mechanism of the hollow octahedral structure, samples subjected to different reaction conditions were studies. The results showed that the morphology and structures of Cu20 particles were greatly affected by the concentration of pH value of the reaction environment and the reaction time. Ostwald ripening process is orooosed to exolain the growth mechanism of the hollow octahedral nanostructures.
文摘Using brighten white and modified PET chips, fine denier hollow fibres (dpf=0.5~1.5) were prepared on a Fuji Filter MSTC-400 and VC-443A drawn machine, whose structure and properties were tested by X-ray diffraction mater, SOM-II sonic velocity meter and Instron-1122 Tensile tester, electron and light microscopy etc,. The results show: fine denier hollow taken-up yarns prepared at low spinning velocity have radial orientation, higher strength and elongation at rupture because radial stress is higher than normal stress. Fine denier hollow drawn yarns with hollow degree up to 18~35% and high tenacity, together with high crystalline degree and small crystal and amorphous domains, can be empolyed as products.
基金supported by Grant No.224014 PHOTONICS4LIFE of FP7-ICT-2007-2Project No.1.4.09+3 种基金RF Governmental contracts 11.519.11.2035,14.B37.21.0728 and 14.B37.21.0563FiDiPro,TEKES Program(40111/11),FinlandSCOPES EC,Uzb/Switz/RF,Swiss NSF,IZ74ZO 137423/1RF President's Grant 1177.2012.2"Scientific Schools".
文摘The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.
基金supported by the NationalScience Foundation of China(2006CB202508)wewould like to extend our heartfelt thanks to the RIPP’s labo-ratories engaging in XRD and FT-IR analyses for theirenergetical support and warm assistance provided to thisresearch work.
文摘In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.
基金the National Natural Science Foundation of China(No.U1703131,No.51674027,No.51974027 and No.52004028)Guangdong Basic and Applied Basic Research Foundation(2019A1515111126)the Fundamental Research Funds for the Central Universities(FRF-TP-18-005C1 and FRF-TP-18-041A1).
文摘The two-phase zone continuous casting(TZCC)technique was used to continuously cast high-strength aluminum alloy hollow billets,and a verified 3D model of TZCC was used to simulate the flow and temperature fields at casting speeds of 2-6 mm·min^(-1).Hollow billets under the same conditions were prepared,and their macro/microstructures were analyzed by an optical microscope and a scanning electron microscope.During the TZCC process,a circular fluid flow appears in front of the mushy zone,and the induction heated stepped mold and convective heat transfer result in a curved solidification front with depressed region near the inner wall and a vertical temperature gradient.The deflection of the solidification front decreases and the average cooling rate in the mushy zone increases with increasing casting speed.Experimental results for a 2D12 alloy show that hot tearing periodically appears in the hollow billet accompanied by macrosegregation near the inner wall at casting speeds of 2 and 4 mm·min^(-1),while macroscopic defects of hot tearing and macrosegregation weaken and the average size of columnar crystals in the hollow billets decreases with further increasing casting speed.2D12 aluminum alloy hollow billets with no macroscopic defects,the finest columnar crystals,and excellent mechanical properties were prepared by TZCC at a casting speed of 6 mm·min^(-1),which is beneficial for the further plastic forming process.
文摘In order to investigate the rules on preparation of titanium silicalite (TS-1) the ^1H →^13C CP/ MAS NMR spectrometers were applied to track the function of template TPAOH in the process of crystallization of titanium silicalite. The research results revealed that at the initial stage of crystallization the TPA+ ions acting as the template could predominantly absorb the polymers of negatively charged silicatitania sol and the interactions between silica sol and titania sol could gradually lead to the formation of tiny crystal nuclei that could slowly grow up to form molecular sieves. Upon investigating the course of crystallization of titanium silicalite the ^1H →^13C CP/MAS NMR spectrometers were applied to effectively enhance the resolution of 29Si signals in the titanium silicalite. Study results have shown that during the formation of tiny crystal nuclei upon interaction between titania sol and silica sol the influence of titania sol on the silica sol was insignificant. However, when tiny crystal nuclei broke out into molecular sieves the titania sol could enter the zeolite framework that could apparently impose an enhanced effect on the silica sol.
基金supported by the National Natural Science Foundation of China (Grant No 60578043)the Beijing Education Committee Common Build Foundation (Grant No XK100130637)
文摘This paper investigates the zero dispersion wavelength and dispersion slope control of hollow-core photonic bandgap fibres (PBGFs) by using a full-vector finite element method. By simulation we found that theoretically the zero dispersion wavelength can be tailored by respectively changing the rounded diameter of air holes, pitch, refractive index, normalized thickness of core rings, and hole diameter to pitch ratio. At the same time the tailoring of dispersion slope can also be realized by changing the rounded diameter of air holes or pitch or normalized thickness of core rings. To illustrate the reasonability of fibre designs, this paper also gives the variance of normalized interface field intensity which measures the scattering loss relatively versus wavelength for different designs. From the viewpoint of loss, varying the rounded diameter and the thickness of core ring could shift zero wavelength but it is difficult to get the required parameters within so tiny range in practical drawing of PBGFs, on the other hand, it is possible in practice to respectively alter the pitch and refractive index to shift zero wavelength. But varying hole diameter to pitch ratio is not worthwhile because they each induce large increase of loss and narrowness of transmission bandwidth. The zero dispersion wavelength can be engineered by respectively varying the rounded diameter of air holes, pitch, refractive index, and normalized thickness of core rings without incurring large loss penalties.