The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applicatio...Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies.展开更多
During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microst...During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microstructure evolution law of aluminum alloy hollow shaft in cross wedge rolling without mandrel, a finite element model is constructed through the finite element software Deform-3D. The influences of rolling temperature, sectional shrinkage,spreading angle and forming angle on the average grain size of rolled piece are studied by numerical simulation of microstructure evolution. The cellular automata method reveals the inherent relationship between the process parameters and the evolution of the microstructure, and provides a reference for optimizing the rolling process parameters of aluminum alloy hollow shafts and improving the forming quality. The results show that the average grain size of the rolled piece increases with the increase of the rolling temperature, decreases with the increase of the sectional shrinkage,and decreases first and then increases with the increase of the spreading angle, and changes little with the increase of the forming angle.展开更多
Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current rev...Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes.展开更多
In recent years, the crack fault is one of the most common faults in the rotor system and it is still a challenge for crack position diagnosis in the hollow shaft rotor system. In this paper, a method based on the Con...In recent years, the crack fault is one of the most common faults in the rotor system and it is still a challenge for crack position diagnosis in the hollow shaft rotor system. In this paper, a method based on the Convolutional Neural Network and deep metric learning(CNN-C) is proposed to effectively identify the crack position for a hollow shaft rotor system. Center-loss function is used to enhance the performance of neural network. Main contributions include: Firstly, the dynamic response of the dual-disks hollow shaft rotor system is obtained. The analysis results show that the crack will cause super-harmonic resonance, and the peak value of it is closely related to the position and depth of the crack. In addition, the amplitude near the non-resonant region also has relationship with the crack parameters. Secondly, we proposed an effective crack position diagnosis method which has the highest 99.04% recognition accuracy compared with other algorithms. Then,the influence of penalty factor on CNN-C performance is analyzed, which shows that too high penalty factor will lead to the decline of the neural network performance. Finally, the feature vectors are visualized via t-distributed Stochastic Neighbor Embedding(t-SNE). Naive Bayes classifier(NB) and K-Nearest Neighbor algorithm(KNN) are used to verify the validity of the feature vectors extracted by CNN-C. The results show that NB and KNN have more regular decision boundaries and higher recognition accuracy on the feature vectors data set extracted by CNN-C,indicating that the feature vectors extracted by CNN-C have great intra-class compactness and inter-class separability.展开更多
为了保证永磁无刷直流空心轴电机的输出性能和抑制电磁振动,提出了一种基于非线性多元回归的修正代理模型优化方法.首先,通过AE(Audze-Elglajs)准则确定最优空间填充抽样,并采用核主成分分析(Kernel Principal Components Analysis,KPCA...为了保证永磁无刷直流空心轴电机的输出性能和抑制电磁振动,提出了一种基于非线性多元回归的修正代理模型优化方法.首先,通过AE(Audze-Elglajs)准则确定最优空间填充抽样,并采用核主成分分析(Kernel Principal Components Analysis,KPCA)算法筛选出4个主要变量用于构建代理模型;其次,采用非线性多元回归构建代理模型,决定系数R^(2)值均大于0.9,验证了代理模型的精度;最后,采用鲁棒多目标遗传算法求解代理模型,获得了最优定子槽参数.结果表明,通过优化定子槽参数,电机平均转矩降低了1.3%,不影响输出性能,电机空载、额定负载时最大振动加速度分别降低19%和34.5%,有效地降低了电磁振动,验证了优化方法的有效性和可靠性.展开更多
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and ...Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.展开更多
新能源汽车转向驱动桥半轴采用空心设计,与燃油汽车的结构形式有很大区别,针对电动汽车转向驱动桥空心半轴的最大等效应力与设计变量呈隐式复杂非线性关系的可靠度分析难题,文中通过将Kriging模型与蒙特卡洛(Monte Carlo Simulation,MCS...新能源汽车转向驱动桥半轴采用空心设计,与燃油汽车的结构形式有很大区别,针对电动汽车转向驱动桥空心半轴的最大等效应力与设计变量呈隐式复杂非线性关系的可靠度分析难题,文中通过将Kriging模型与蒙特卡洛(Monte Carlo Simulation,MCS)法相结合,提出了基于AK-MCS(Active Learning Kriging-Monte Carlo Simulation)法的新能源电动汽车转向驱动桥空心半轴可靠度分析方法。首先,采用Kriging代理模型构建新能源电动汽车转向驱动桥空心半轴的最大等效应力的初始代理模型;其次,通过Kriging提供的学习函数和收敛准则逐步增加样本点,从而对初始最大等效应力的Kriging模型进行更新;最后,对更新后的Kriging代理模型计算新能源电动汽车转向驱动桥空心半轴的可靠度。结果表明:与MCS方法相比,基于AK-MCS方法的可靠度分析在时间上缩短2000余倍;与Kriging+MCS方法相比,基于AK-MCS方法的可靠度分析误差减小了50%。由此验证了基于AK-MCS方法空心半轴可靠度分析的高效性和准确性,为电动汽车转向驱动桥空心半轴可靠性的研究提供了理论依据,具有一定的工程意义。展开更多
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
文摘Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies.
基金Project(52075272) supported by the National Natural Science Foundation of ChinaProject(LY18E050006) supported by the Natural Science Foundation of Zhejiang Province,China+1 种基金Project(2017A610088) supported by the Natural Science Foundation of Ningbo City,ChinaProjects(2018B10004, 2019B10100) supported by the Ningbo Science and Technology Plan,China。
文摘During the process of cross wedge rolling of aluminum alloy hollow shaft, the evolution of its microstructure has an important influence on the mechanical properties of the rolled piece. In order to obtain the microstructure evolution law of aluminum alloy hollow shaft in cross wedge rolling without mandrel, a finite element model is constructed through the finite element software Deform-3D. The influences of rolling temperature, sectional shrinkage,spreading angle and forming angle on the average grain size of rolled piece are studied by numerical simulation of microstructure evolution. The cellular automata method reveals the inherent relationship between the process parameters and the evolution of the microstructure, and provides a reference for optimizing the rolling process parameters of aluminum alloy hollow shafts and improving the forming quality. The results show that the average grain size of the rolled piece increases with the increase of the rolling temperature, decreases with the increase of the sectional shrinkage,and decreases first and then increases with the increase of the spreading angle, and changes little with the increase of the forming angle.
文摘Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes.
基金the financial supports from the National Natural Science Foundation of China(No.11972129)the National Major Science and Technology Projects of China(No.2017-IV-0008-0045)。
文摘In recent years, the crack fault is one of the most common faults in the rotor system and it is still a challenge for crack position diagnosis in the hollow shaft rotor system. In this paper, a method based on the Convolutional Neural Network and deep metric learning(CNN-C) is proposed to effectively identify the crack position for a hollow shaft rotor system. Center-loss function is used to enhance the performance of neural network. Main contributions include: Firstly, the dynamic response of the dual-disks hollow shaft rotor system is obtained. The analysis results show that the crack will cause super-harmonic resonance, and the peak value of it is closely related to the position and depth of the crack. In addition, the amplitude near the non-resonant region also has relationship with the crack parameters. Secondly, we proposed an effective crack position diagnosis method which has the highest 99.04% recognition accuracy compared with other algorithms. Then,the influence of penalty factor on CNN-C performance is analyzed, which shows that too high penalty factor will lead to the decline of the neural network performance. Finally, the feature vectors are visualized via t-distributed Stochastic Neighbor Embedding(t-SNE). Naive Bayes classifier(NB) and K-Nearest Neighbor algorithm(KNN) are used to verify the validity of the feature vectors extracted by CNN-C. The results show that NB and KNN have more regular decision boundaries and higher recognition accuracy on the feature vectors data set extracted by CNN-C,indicating that the feature vectors extracted by CNN-C have great intra-class compactness and inter-class separability.
文摘为了保证永磁无刷直流空心轴电机的输出性能和抑制电磁振动,提出了一种基于非线性多元回归的修正代理模型优化方法.首先,通过AE(Audze-Elglajs)准则确定最优空间填充抽样,并采用核主成分分析(Kernel Principal Components Analysis,KPCA)算法筛选出4个主要变量用于构建代理模型;其次,采用非线性多元回归构建代理模型,决定系数R^(2)值均大于0.9,验证了代理模型的精度;最后,采用鲁棒多目标遗传算法求解代理模型,获得了最优定子槽参数.结果表明,通过优化定子槽参数,电机平均转矩降低了1.3%,不影响输出性能,电机空载、额定负载时最大振动加速度分别降低19%和34.5%,有效地降低了电磁振动,验证了优化方法的有效性和可靠性.
文摘Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.
文摘新能源汽车转向驱动桥半轴采用空心设计,与燃油汽车的结构形式有很大区别,针对电动汽车转向驱动桥空心半轴的最大等效应力与设计变量呈隐式复杂非线性关系的可靠度分析难题,文中通过将Kriging模型与蒙特卡洛(Monte Carlo Simulation,MCS)法相结合,提出了基于AK-MCS(Active Learning Kriging-Monte Carlo Simulation)法的新能源电动汽车转向驱动桥空心半轴可靠度分析方法。首先,采用Kriging代理模型构建新能源电动汽车转向驱动桥空心半轴的最大等效应力的初始代理模型;其次,通过Kriging提供的学习函数和收敛准则逐步增加样本点,从而对初始最大等效应力的Kriging模型进行更新;最后,对更新后的Kriging代理模型计算新能源电动汽车转向驱动桥空心半轴的可靠度。结果表明:与MCS方法相比,基于AK-MCS方法的可靠度分析在时间上缩短2000余倍;与Kriging+MCS方法相比,基于AK-MCS方法的可靠度分析误差减小了50%。由此验证了基于AK-MCS方法空心半轴可靠度分析的高效性和准确性,为电动汽车转向驱动桥空心半轴可靠性的研究提供了理论依据,具有一定的工程意义。