期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
1
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Fabrication of triple-shelled hollow spheres with optical properties via RAFT polymerization 被引量:4
2
作者 Li Ping Wang Li Min Zhao +4 位作者 Wen Zhi Li Rui Qing Chu Long Tan Xiu Xiu Zhao Gang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第7期864-867,共4页
The triple-shelled hollow spheres with optical properties were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization.After removal the core templates of the poly(styrene),the hollow silic... The triple-shelled hollow spheres with optical properties were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization.After removal the core templates of the poly(styrene),the hollow silica spheres were obtained.The coating process of poly(methyl methacrylate)(PMMA) on the hollow silica spheres surface via surface RAFT polymerization was performed subsequently.The polymers coated on the hollow spheres surfaces were end-functionalized by trithiocarbonate,and they were used as RAFT agent to proceed the chain extension polymerization using Tb complex as monomer.The samples were characterized by FT-IR,SEM and luminescence spectroscopy respectively.The results indicated that the triple-shelled hollow spheres had been prepared successfully and the average diameter of the hollow core was about 1μm. 展开更多
关键词 hollow spheres Optical properties POLYMERS SURFACES LUMINESCENCE
下载PDF
Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres 被引量:3
3
作者 Mostafa Amirjan Hamid Khorsand Manouchehr Khorasani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1146-1151,共6页
Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating proce... Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%. 展开更多
关键词 fluidized bed coating ALUMINUM NANOCOMPOSITES EFFICIENCY nanoparticles hollow spheres binders
下载PDF
TiO_2-coated SnO_2 hollow spheres as anode materials for lithium ion batteries 被引量:4
4
作者 YI Jin LI Xiaoping +4 位作者 HU Shejun LI Weishan ZENG Ronghua FU Zhao CHEN Lang 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期589-594,共6页
TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transm... TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and galvanostatic charge/discharge tests. The results obtained from XRD, SEM, and TEM show that TiO2 can be uniforrrdy coated on the surface of SnO2 hollow spheres with the assistance of anionic surfactant. The cyclic voltammograms indicate that both TiO2 and SnO2 exhibit the activity for Li-ion storage. The charge/discharge tests show that the prepared TCS hollow spheres have a higher reversible coulomb efficiency and a better cycling stability than the uncoated SnO2 hollow spheres. 展开更多
关键词 TiO2-coated SnO2 hollow spheres ANODE lithium ion batteries
下载PDF
Preparation of CaCO_3 Hollow Spheres in an Aqueous Binary-additive System 被引量:2
5
作者 张群 陈传宝 方亮 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第2期151-156,共6页
CaCO3 hollow spheres were prepared easily in anion surfactants (sodium dodecylbenzenesulfonate (SDBS)) and aspartic (Asp) acid binary-additive system by using an easy rapid agitation method. The as-prepared prod... CaCO3 hollow spheres were prepared easily in anion surfactants (sodium dodecylbenzenesulfonate (SDBS)) and aspartic (Asp) acid binary-additive system by using an easy rapid agitation method. The as-prepared products were characterized with scanning electron microscopy (SEM), FT-IR and X-ray diffraction. The results suggested that the CaCO3 hollow spheres have diameters ranging from 1 to 2 μm, and their wall is constituted of many nano-particles. Moreover, the possible formation mechanism of the hollow spherical structure was proposed. 展开更多
关键词 hollow spheres complex micelles CACO3
下载PDF
Catalytic oxidation of pentanethiol on basic nitrogen doped carbon hollow spheres derived from waste tires
6
作者 Jing Luo Wen-Feng Zhang +8 位作者 Yan-Chen Wei Ji-Xing Liu Chao Wang Yi-Ru Zou Hai-Tao Ju Li-Ping Mu Yan-Hong Chao Hong-Bing Ji Wen-Shuai Zhu 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1888-1896,共9页
A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. C... A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. Compared to pristine carbon, the p-N-C has a higher surface curvature conducive to the enrichment of substrates, leading to an excellent catalytic performance. This increased surface curvature of p-N-C was fabricated on the synergistic effect of two foaming agents((NH4)2 C2 O4 and NaHCO3), and the released gas also endows the spherical shell of p-N-C with a hierarchical porous structure, promoting the accessibility of active sites with pentanethiol. Pyridine-like and pyrrolic-like nitrogen atoms were investigated as reactive sites on the p-N-C to accelerate the electron transfer from sulfur to active surface oxygen and enhance the adsorption/oxidation process. As a result, the optimal p-N-C catalyst exhibits superior adsorption and oxidation performance(99.9%) of pentanethiol, outperforming the “unleavened”catalyst(20.8%). This work offers a new avenue for the fabrication of highly efficient materials for the desulfurization of fuel. 展开更多
关键词 Carbon hollow spheres NITROGEN-DOPING Waste tires Leavening strategy Pentanethiol
下载PDF
Preparation of Nanocrystalline MoS2 Hollow Spheres
7
作者 XianYunXU XiaoGuangLI 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第7期759-762,共4页
Nanocrystalline MoS2 with hollow spherical morphology has been prepared by the hydrothermal method. The products are characterized by means of X-ray powder diffraction, transmission electron microscopy and high-resol... Nanocrystalline MoS2 with hollow spherical morphology has been prepared by the hydrothermal method. The products are characterized by means of X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The experimental results give the evidence that the sample is consists of hollow spheres 400~600 nm in diameter, and there is much whisker on the surface of MoS2 hollow sphere. 展开更多
关键词 Nanocrystalline MoS2 hollow spheres WHISKER hydrothermal method.
下载PDF
Microwave-Assisted Synthesis of NiCo_2O_4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries 被引量:5
8
作者 Xiong Zhang Yanping Zhou +3 位作者 Bin Luo Huacheng Zhu Wei Chu Kama Huang 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期117-123,共7页
The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability i... The ternary transitional metal oxide NiCo_2O_4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo_2O_4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt,and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized productwas tested as an anode material in a sodium ion battery,was found to exhibit a high reversible specific capacity of 511 m Ahg^(-1) at 100 m Ag^(-1), and deliver high capacity retention after 100 cycles. 展开更多
关键词 NiCo2O4 Double-shelled hollow sphere MICROWAVE Sodium ion battery
下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:4
9
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 Catalyst support C/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
下载PDF
Preparation and Characterization of Cu_3V_2O_7(OH)_2·2H_2O Hollow Spheres from Na_2V_6O_16·3H_2O Nanobelts
10
作者 YANG Fang JI Tian-hao +3 位作者 DU Hai-yan SUN ha-yue YANG Qing-lin GE Guang-lu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第2期132-137,共6页
Monoclinic Cu3V2O7(OH)2·2H2O(copper polyvanadate) hollow spheres were prepared with Na2V6O16·3H2O nanobelts as V-precursor by hydrothermal method. The purity and structure of the products were characteri... Monoclinic Cu3V2O7(OH)2·2H2O(copper polyvanadate) hollow spheres were prepared with Na2V6O16·3H2O nanobelts as V-precursor by hydrothermal method. The purity and structure of the products were characterized by X-ray powder diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis(TGA) and X-ray photoelecton spectroscopy(XPS). The morphology and size were observed by scanning electron microscopy(SEM). We found that the Kagomé staircase-structural copper polyvanadate hollow spheres with an average diameter of 7 μm could be easily synthesized via the reaction of Na2V6O16·3H2O nanobelts with sufficient copper sulfate. The dielectric property of the copper polyvanadate demonstrates that dielectric loss hardly changes when the frequency of applied electric field is higher than 100 kHz. The formation process of the hollow spheres is discussed in detail by the observation of a series of products prepared for different reaction time. 展开更多
关键词 Hydrothermal synthesis NANOBELT OXIDE hollow sphere Monoclinic copper polyvanadate
下载PDF
Three-Layer Structured SnO_(2)@C@TiO_(2)Hollow Spheres for High-Performance Sodium Storage
11
作者 Yu Tian Ping Hu +6 位作者 Ting Zhu Zhenhui Liu Guangwu Hu Congcong Cai Zelang Jian Liang Zhou Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期428-433,共6页
The unsatisfactory conductivity and large volume variation severely handicap the application of SnO_(2)in sodium-ion batteries(SIBs).Herein,we design unique three-layer structured SnO_(2)@C@TiO_(2)hollow spheres to ta... The unsatisfactory conductivity and large volume variation severely handicap the application of SnO_(2)in sodium-ion batteries(SIBs).Herein,we design unique three-layer structured SnO_(2)@C@TiO_(2)hollow spheres to tackle the above-mentioned issues.The hollow cavity affords empty space to accommodate the volume variation of SnO_(2),while the C and TiO_(2)protecting shells strengthen the structural integrity and enhances the electrical conductivity.As a result,the three-layer structured SnO_(2)@C@TiO_(2)hollow spheres demonstrate enhanced Na storage performances.The SnO_(2)@C@TiO_(2)manifests a reversible capacity two times to that of pristine SnO_(2)hollow spheres.In addition,Ex situ XRD reveals highly reversible alloying and conversion reactions in SnO_(2)@C@TiO_(2)hollow spheres.This study suggests the introduction of a hollow cavity and robust protecting shells is a promising strategy for constructing SIB anode materials. 展开更多
关键词 hollow sphere SnO_(2) sodium-ion battery protecting shell structural integrity
下载PDF
Zirconia Hollow Spheres and Their Application
12
作者 GAO Qianyu WU Aijun +1 位作者 WANG Qi YIN Hongji 《China's Refractories》 CAS 2018年第4期26-30,共5页
Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advanta... Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advantages of low bulk density and excellent thermal insulation properties.Their thermal conductivity is 0.3-0.4 W · m-1 · K-1 only 1/2 of that of the ordinary zirconia products.They are special refractories which can be used steadily up to 2 400 ℃ in oxidation,reduction and vacuum atmospheres.Zirconia hollow sphere products are the best lining refractories for various ultra-high temperature kilns and furnaces of tungsten and molybdenum metal products processing,artificial crystals,and quartz industrial production. 展开更多
关键词 zirconia hollow sphere high temperature resistance thermal insulation APPLICATION
下载PDF
β-SiAlON Hollow Spheres Prepared from Coal Fly Ash Microspheres
13
作者 ZHANG Lei WANG Xueping +2 位作者 YANG Jiujun WANG Wenjuan YANG Fuzeng 《China's Refractories》 CAS 2009年第4期13-17,共5页
β-SiAION hollow spheres were prepared by carbothermal reduction method, using coal fly ash ( 〈 15 μm, 43 - 77 μm, and 〉 100 μm) and active carbon in Some proportion (20% less than theoretical addition, theore... β-SiAION hollow spheres were prepared by carbothermal reduction method, using coal fly ash ( 〈 15 μm, 43 - 77 μm, and 〉 100 μm) and active carbon in Some proportion (20% less than theoretical addition, theoretical addition and 10% excess theoretical addition) as starting materials, putting into alumina crucible in high temperature nitriding furnace after well mixed, and holding at 1 300 ℃, 1 350 ℃, 1 400 ℃, 1 450 ℃, and 1 500 ℃ for 6 h. Effects of temperature, particle size of the microsphere . and addition of active carbon on the phase composition and microstructure of the nitridized products were studied by means of XRD and SEM. The results show that the nitridation reaction starts at 1 300 ℃ ; excess active carbon is necessary to form β-SiAION hollow spheres, and particle size is the important parameter to form the hollow spheres nitridized products β-SiAION; at 1 500 ℃, when the active carbon is 10% in excess, the β-SiAlON hollow spheres, which were prepared using coal fly ash with particle size 〉 100 μm, are featured with rough surface, high hollowness and low density. 展开更多
关键词 Coal fly ash rnicrospheres Carbontherrnal reduction β-SIMON hollow sphere
下载PDF
Resistive-type sensors based on few-layer MXene and SnO_(2)hollow spheres heterojunctions:Facile synthesis,ethanol sensing performances
14
作者 Lihua Chu Hao Yan +5 位作者 Wanfeng Xie Yuxin Shi Muhammad Hilal Changxu Sun Ze Li Meicheng Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期502-507,共6页
High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra... High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect. 展开更多
关键词 HETEROSTRUCTURE Few-layer MXene SnO_(2)hollow spheres Ethanol sensor Synergistic effect SnO_(2)/Ti_(3)C_(2)T_(x)composites
原文传递
One-pot synthesis of bimetallic Fe/Co incorporated silica hollow spheres with superior peroxidase-like activity
15
作者 Wenli Zhao Wenhao Wang +3 位作者 Fancang Meng Yang Du Qingmin Ji Heng-Dao Quan 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期414-417,共4页
Mesoporous silica hollow spheres with a homogenous and high content distribution of Fe and Co were synthesized by a facile one-pot hydrothermal process. The sub-nanometer bimetallic components inside the silica framew... Mesoporous silica hollow spheres with a homogenous and high content distribution of Fe and Co were synthesized by a facile one-pot hydrothermal process. The sub-nanometer bimetallic components inside the silica framework facilitate the stable fixation and the open accessibility to active sites. The co-doped Fe/Co in the spheres showed excellent peroxidase-like activity and much higher catalytic performance than their monometallic-supported spheres. The synergistic effect between Fe and Co promotes the continuous formation of functional radicals during the oxidation process and thus accelerates the reaction rate. When used for colorimetric detection of hydrogen peroxide(H_(2)O_(2)), the Fe/Co incorporated silica hollow spheres show the capability of detection of H_(2)O_(2) in a wide range(10-250 μmol/L) and with the low detection limit of 0.012 ppm. 展开更多
关键词 Bimetallic doping Mesoporous silica hollow sphere Supported catalyst Peroxidase-like activity
原文传递
Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe_(2) embedded mesoporous hollow carbon spheres
16
作者 Yubin Kuang Wei Qiao +1 位作者 Fulin Yang Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期447-454,I0012,共9页
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ... The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction. 展开更多
关键词 Hydrogen evolution reaction RUTHENIUM ELECTROCATALYST MoSe_(2) Mesoporous hollow carbon spheres
下载PDF
Preparation and performance of CeO_2 hollow spheres and nanoparticles 被引量:7
17
作者 张问问 陈东辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第3期295-299,共5页
CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM)... CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m^2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere. 展开更多
关键词 CEO2 UV-SHIELDING hollow spheres TEMPLATE Rh B rare earths
原文传递
MoS_2 Nanosheet Arrays Rooted on Hollow rGO Spheres as Bifunctional Hydrogen Evolution Catalyst and Supercapacitor Electrode 被引量:8
18
作者 Shizheng Zheng Lijun Zheng +4 位作者 Zhengyou Zhu Jian Chen Jianli Kang Zhulin Huang Dachi Yang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期70-80,共11页
MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggr... MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS_2 nanosheet arrays(hrGO@MoS_2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS_2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS_2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas(144.9 m^2 g^(-1), ca. 4.6-times that of pristine MoS_2), the h-rGO@MoS_2 architecture shows a high specific capacitance(238 F g^(-1) at a current density of 0.5 A g^(-1)), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures,which may serve both as efficient HER catalysts and supercapacitor electrodes. 展开更多
关键词 MoS2 Reduced graphene oxide(rGO) hollow spheres Hydrogen evolution reaction(HER) SUPERCAPACITOR
下载PDF
Plasmonic Au nanoparticles supported on both sides of Ti02 hollow spheres for maximising photocatalytic activity under visible light 被引量:5
19
作者 Jianwei Lu Lan Lan +2 位作者 Xiaoteng Terence Liu Na Wang Xiaolei Fan 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第4期665-671,共7页
A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrifici... A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrificial templating method and convex surface-induced confinement.The composite structure of single Au NP yolk-Ti02 shell-Au NPs,denoted as Au@Au(Ti02,was rendered and confirmed by the transmission electron microscopy analysis.Au@Au(Ti02 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(Ti02 by 77%and Au@P25 by 52%,respectively,in phenol degradation. 展开更多
关键词 Ti02 hollow spheres plasmonic Au nanoparticles CONFINEMENT visible light photocatalytic degradation
原文传递
Enhanced photocatalytic activity and mechanism of CeO_(2) hollow spheres for tetracycline degradation 被引量:5
20
作者 Dan Wang Fang-Xin Yin +3 位作者 Bei Cheng Yang Xia Jia-Guo Yu Wing-Kei Ho 《Rare Metals》 SCIE EI CAS CSCD 2021年第9期2369-2380,共12页
Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method fo... Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation. 展开更多
关键词 CeO_(2)hollow spheres Photocatalytic degradation TETRACYCLINE MECHANISM Reaction pathway
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部