Monoclinic Cu3V2O7(OH)2·2H2O(copper polyvanadate) hollow spheres were prepared with Na2V6O16·3H2O nanobelts as V-precursor by hydrothermal method. The purity and structure of the products were characteri...Monoclinic Cu3V2O7(OH)2·2H2O(copper polyvanadate) hollow spheres were prepared with Na2V6O16·3H2O nanobelts as V-precursor by hydrothermal method. The purity and structure of the products were characterized by X-ray powder diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis(TGA) and X-ray photoelecton spectroscopy(XPS). The morphology and size were observed by scanning electron microscopy(SEM). We found that the Kagomé staircase-structural copper polyvanadate hollow spheres with an average diameter of 7 μm could be easily synthesized via the reaction of Na2V6O16·3H2O nanobelts with sufficient copper sulfate. The dielectric property of the copper polyvanadate demonstrates that dielectric loss hardly changes when the frequency of applied electric field is higher than 100 kHz. The formation process of the hollow spheres is discussed in detail by the observation of a series of products prepared for different reaction time.展开更多
A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethy...A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).展开更多
Hollow spheres of elemental antimony (Sb) with good crystallinity, high contrast and thin wall were prepared in the solutions of poly(ethylene glycol) (PEG) and oleic acid(OA) associations at the refluxed temperature....Hollow spheres of elemental antimony (Sb) with good crystallinity, high contrast and thin wall were prepared in the solutions of poly(ethylene glycol) (PEG) and oleic acid(OA) associations at the refluxed temperature. The complexes of Sb3+ with tartaric acid were used as precursors, which can avoid the hydrolysis of SbCl3 and the resulting impurity of products. The average diameter and thickness of the as-prepared hollow sphere are about 300 nm and less than 20 nm, respectively. The formation of hollow spheres depends on the template function of PEG and OA associations, which can be confirmed through the theoretical analysis and results of control experiments. The specific surface area reaches 34.669 m2/g.展开更多
CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM)...CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m^2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.展开更多
A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed so...A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 pm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.展开更多
Carbon microspheres were firstly prepared using glucose (C6H12O6 ) as the starting materials by hydrotherreal carbonization. Then hollow ZrB2 spheres were successfully synthesized using zirconium oxychloride ( ZrCl...Carbon microspheres were firstly prepared using glucose (C6H12O6 ) as the starting materials by hydrotherreal carbonization. Then hollow ZrB2 spheres were successfully synthesized using zirconium oxychloride ( ZrClO2 · 8H2O), boric acid ( H3BO3 ) by a combined solgel and boro/carbothermal reduction method, and the prepared carbon microspheres as the template. The effects of the reaction temperatures (1 200, 1 300, 1 400 and 1 500 ℃, respectively) and contents of carbon microspheres ( n ( C ) : n ( ZrO2 + B2O3) is 5. 0, 5. 5, 6. 0 and 6. 5, respectively) on the synthesis of hollow ZrB2 spheres were studied. The prepared carbon microspheres have smooth sugrace and good hollow structure by hydrothermal nitridation. Increase of reaction temperature and excessive carbon microspheres can greatly promote the formation of hollow ZrB2 spheres. The optimized reaction temperature and molar ratio of n (C)/ n ( ZrO2 + B2O3 ) were 1 500 ℃ and 6.5, respectively.展开更多
In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: firs...In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.展开更多
Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocata...Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.展开更多
It is of paramount importance to improve the utilization efficiency of hollow titanium silicate(HTS) zeolite catalyst used in the cyclohexanone ammoxidation process. To achieve this aim, the regeneration of simulated ...It is of paramount importance to improve the utilization efficiency of hollow titanium silicate(HTS) zeolite catalyst used in the cyclohexanone ammoxidation process. To achieve this aim, the regeneration of simulated deactivated HTS zeolite by post-synthesis was carried out in an aqueous TPAOH solution under hydrothermal conditions. It was found that the catalytic performance for phenol hydroxylation over regenerated HTS zeolite was as high as that of fresh one.Judging from the BET measurements, electron micrography and XRD analysis results, it was confirmed that the topological and morphological structure was repaired. The chemical state of Ti species was detected by the UV-Vis and ^(29)Si MAS NMR spectroscopy. No acidic amorphous TiO_2-SiO_2 oxide was formed, and the extraframework Ti species could be reincorporated into the framework of HTS zeolite thanks to the tetrahedral coordination by the condensation between Ti-OH and Si-OH groups. In order to confirm this conclusion, the fresh HTS zeolite was treated under the NH_3·H_2O hydrothermal and thermal conditions for several times. The catalytic activity of both uncalcined and calcined simulated deactivated HTS zeolite samples could be regenerated without the formation of Br?nsted acid sites. It was concluded that the highly dispersed Ti species could be reincorporated into the framework of zeolite by hydrated condensation of Si-OH and Ti-OH groups after secondary hydrothermal synthesis.展开更多
Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of recha...Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them.展开更多
Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent str...Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent structural stability. However, the excessive stacking of interlayer electron clouds makes it difficult to expose internal active sites. Strategies to design functional COFs with controllable morphology and copious active sites are promising but still challenging. Herein, by utilizing the condensation between1,3,5-triformylbenzene(TFB) and p-phenylenediamine(PPD) and using amino-modified SiO_(2) nanospheres as templates, we synthesize core-shell NH_(2)-SiO_(2)@TP-COF. Through NaOH etching of NH_(2)-SiO_(2)@TP-COF, we obtain imine-based TP-COF hollow nanospheres, which shows excellent potassium storage performance when applied to the anode for PIBs. Ex-situ analysis and density functional theory calculations reveal that C=N groups and benzenes are active sites for K^(+) storage.展开更多
Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large sp...Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.展开更多
CeO2 hollow microspheres were prepared through a facile method by using yeast cells as bio-templates. The yeast pro- vided a solid flame for the deposition of cerium hydroxide to form the hybrid Ce(OH)3@yeast precur...CeO2 hollow microspheres were prepared through a facile method by using yeast cells as bio-templates. The yeast pro- vided a solid flame for the deposition of cerium hydroxide to form the hybrid Ce(OH)3@yeast precursor. The resulting CeO2 hollow microspheres were obtained by calcining the precursor. The products were characterized by field emission scanning electron micros- copy (FE-SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption/desorption analysis, X-ray photoelectron spectrum (XPS) and H2 temperature programmed reduction (H2-TPR) It was found that the products fully retained the morphology of the yeast cells and the size of the hollow microspheres was about 1.5-2 μm. The catalytic test results showed that the as-obtained hollow CeO2 microspheres possessed a higher catalytic activity in CO oxidation than the commercial CeO2, which attributed to their higher surface area, hollow structure and superior reducibility. This study provided a promising route for the preparation of a variety of other inorganic hollow microspheres.展开更多
Sub-100 nm hollow carbon nanospheres with thin shells are highly desirable anode materials for energy storage applications. However, their synthesis remains a great challenge with conventional strategies. In this work...Sub-100 nm hollow carbon nanospheres with thin shells are highly desirable anode materials for energy storage applications. However, their synthesis remains a great challenge with conventional strategies. In this work, we demonstrate that hollow carbon nanospheres of unprecedentedly small sizes (down to - 32.5 nm and with thickness of - 3.9 nm) can be produced on a large scale by a templating process in a unique reverse micelle system. Reverse micelles enable a spatially confined Stober process that produces uniform silica nanospheres with significantly reduced sizes compared with those from a conventional Stober process, and a subsequent well-controlled sol-gel coating process with a resorcinol-formaldehyde resin on these silica nanospheres as a precursor of the hollow carbon nanospheres. Owing to the short diffusion length resulting from their hollow structure, as well as their small size and microporosity, these hollow carbon nanospheres show excellent capacity and cycling stability when used as anode materials for lithium/sodium-ion batteries.展开更多
Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-D.rA-based core-she...Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-D.rA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO2 templates play an important role in the formation of well-defined NH2-f-SiO2@COFTTA-DHXA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO2 cores of NH2-f-SiO2@COFTTA-DHTA. Both the NH2-f-SiO2@COFTTA-I)HTA and COFxTA-DHVA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.展开更多
Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CH...Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CHAp with high crystallinity could be successfully prepared in a short reaction time. A nucleation mechanism was proposed according to the results of characterizing the resultant powders and analyzing the growth process. It shows that the self-made CaCO3 particles play an important role in the template-free synthesis of prickly spheres.展开更多
基金Supported by the "973" Basic Research Foundation of China(No.2006CB932605)the National Natural Science Founda-tion of China(No.20876002).
文摘Monoclinic Cu3V2O7(OH)2·2H2O(copper polyvanadate) hollow spheres were prepared with Na2V6O16·3H2O nanobelts as V-precursor by hydrothermal method. The purity and structure of the products were characterized by X-ray powder diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis(TGA) and X-ray photoelecton spectroscopy(XPS). The morphology and size were observed by scanning electron microscopy(SEM). We found that the Kagomé staircase-structural copper polyvanadate hollow spheres with an average diameter of 7 μm could be easily synthesized via the reaction of Na2V6O16·3H2O nanobelts with sufficient copper sulfate. The dielectric property of the copper polyvanadate demonstrates that dielectric loss hardly changes when the frequency of applied electric field is higher than 100 kHz. The formation process of the hollow spheres is discussed in detail by the observation of a series of products prepared for different reaction time.
基金support of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology(Zhejiang Sci-Tech University),Ministry of Education(No.2005QN04)the National Natural Science Foundation of China(No.20573095)is gratefully acknowledged.
文摘A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).
基金Project(20030756) supported by the Science Foundation of Department of Education of Zhejiang Province, China Project (20041007) supported by the Science Foundation of Jiaxing Science and Technology Bureau, China
文摘Hollow spheres of elemental antimony (Sb) with good crystallinity, high contrast and thin wall were prepared in the solutions of poly(ethylene glycol) (PEG) and oleic acid(OA) associations at the refluxed temperature. The complexes of Sb3+ with tartaric acid were used as precursors, which can avoid the hydrolysis of SbCl3 and the resulting impurity of products. The average diameter and thickness of the as-prepared hollow sphere are about 300 nm and less than 20 nm, respectively. The formation of hollow spheres depends on the template function of PEG and OA associations, which can be confirmed through the theoretical analysis and results of control experiments. The specific surface area reaches 34.669 m2/g.
基金supported by the Capacity Building Program of Shanghai Local Universities(12160503600)
文摘CeO_2 hollow spheres were synthesized by polystryrene sphere(PS) templates and CeO_2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy(SEM), N_2 adsorption-desorption, X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO_2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO_2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller(BET) surface area was 67.1 and 37.2 m^2/g. The CeO_2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.
基金Acknowledgements The authors are grateful to the financial support of the National Natural Science Foundation of China (Grants Nos. 20871038, 20976033 and 21176054), the Fundamental Research Fund for the Central Universities (2010HGZY0012) and the Education Department of Anhui Provincial Government (TD200702).
文摘A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 pm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.
基金financially supported by National Natural Science Foundation of China(General program,51272188,51472184,51472185)State Basic Research Development Program of China(973 Program,2014CB660802)+1 种基金Natural Science Foundation of Hubei Province,China(Contract No.2013CFA086)Foreign cooperation projects in Science and Technology of Hubei Province,China(Contract No.2013BHE002)
文摘Carbon microspheres were firstly prepared using glucose (C6H12O6 ) as the starting materials by hydrotherreal carbonization. Then hollow ZrB2 spheres were successfully synthesized using zirconium oxychloride ( ZrClO2 · 8H2O), boric acid ( H3BO3 ) by a combined solgel and boro/carbothermal reduction method, and the prepared carbon microspheres as the template. The effects of the reaction temperatures (1 200, 1 300, 1 400 and 1 500 ℃, respectively) and contents of carbon microspheres ( n ( C ) : n ( ZrO2 + B2O3) is 5. 0, 5. 5, 6. 0 and 6. 5, respectively) on the synthesis of hollow ZrB2 spheres were studied. The prepared carbon microspheres have smooth sugrace and good hollow structure by hydrothermal nitridation. Increase of reaction temperature and excessive carbon microspheres can greatly promote the formation of hollow ZrB2 spheres. The optimized reaction temperature and molar ratio of n (C)/ n ( ZrO2 + B2O3 ) were 1 500 ℃ and 6.5, respectively.
基金supported by NSFC (No. 20873014 and 21073026)the Program for New Century Excellent Talents in University of China (NCET-09-0254)
文摘In this study, we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior, which can act as active colloidal catalysts. The method includes the following steps: first, hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator, and 2,4-dihydroxybenzoic acid and hexamethylene tetramine (HMT) as the polymer precursors under hydrothermal conditions; Fe3+ or Ag+ cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups; finally, the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process, meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously. The structures of the obtained functional hollow carbon spheres were characterized by TEM, XRD, and TG. As an example, Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.
基金supported by the National Natural Science Foundation of China(21876069,21707054)the Six Talent Peaks Project in Jiangsu(XCL-018)the China Postdoctoral Science Foundation(2016M601744)~~
文摘Herein,we report a unique approach towards the preparation of C-modified and N-doped TiO2 hollow spheres(C/N-TiO2).TEM,SEM,and XPS analyses were used to confirm that the carbon and nitrogen co-decorated TiO2 photocatalyst was formed.Carbon-decoration improves the visible-light absorption and speeds up the separation of the photo-generated electron-hole pairs.C/N-TiO2 not only narrows the band gap of TiO2,but also exhibits excellent photocatalytic activity for the degradation of tetracycline and tetracycline hydrochloride.In addition,the C/N-TiO2 photocatalyst shows excellent recyclability for water decontamination,making it a promising candidate to purify aquatic contaminants.
基金financially supported by the National Basic Research Program of China (973 Program, 2006CB202508)the China Petrochemical Corporation (SINOPEC Group 20673054)
文摘It is of paramount importance to improve the utilization efficiency of hollow titanium silicate(HTS) zeolite catalyst used in the cyclohexanone ammoxidation process. To achieve this aim, the regeneration of simulated deactivated HTS zeolite by post-synthesis was carried out in an aqueous TPAOH solution under hydrothermal conditions. It was found that the catalytic performance for phenol hydroxylation over regenerated HTS zeolite was as high as that of fresh one.Judging from the BET measurements, electron micrography and XRD analysis results, it was confirmed that the topological and morphological structure was repaired. The chemical state of Ti species was detected by the UV-Vis and ^(29)Si MAS NMR spectroscopy. No acidic amorphous TiO_2-SiO_2 oxide was formed, and the extraframework Ti species could be reincorporated into the framework of HTS zeolite thanks to the tetrahedral coordination by the condensation between Ti-OH and Si-OH groups. In order to confirm this conclusion, the fresh HTS zeolite was treated under the NH_3·H_2O hydrothermal and thermal conditions for several times. The catalytic activity of both uncalcined and calcined simulated deactivated HTS zeolite samples could be regenerated without the formation of Br?nsted acid sites. It was concluded that the highly dispersed Ti species could be reincorporated into the framework of zeolite by hydrated condensation of Si-OH and Ti-OH groups after secondary hydrothermal synthesis.
基金This work was supported by the National Natural Science Foundation of China(U1802256,51672128,21773118,21875107,51802154)the Key Research and Development Program in Jiangsu Province(BE2018122)+3 种基金Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).Prof.John Wang and team acknowledge the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095),for research conducted at the National University of SingaporeMr.Jiangmin Jiang would like to acknowledge the financial support from the Funding of Outstanding Doctoral Dissertation in NUAA(BCXJ19-07)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0174)China Scholarship Council(201906830060).
文摘Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them.
基金supported by the National Natural Science Foundation of China (No. 22179063)。
文摘Covalent organic frameworks(COFs), as highly tunable porous crystalline materials, have promising applications in potassium-ion batteries(PIBs) due to their abundant charge carrier transport channels and excellent structural stability. However, the excessive stacking of interlayer electron clouds makes it difficult to expose internal active sites. Strategies to design functional COFs with controllable morphology and copious active sites are promising but still challenging. Herein, by utilizing the condensation between1,3,5-triformylbenzene(TFB) and p-phenylenediamine(PPD) and using amino-modified SiO_(2) nanospheres as templates, we synthesize core-shell NH_(2)-SiO_(2)@TP-COF. Through NaOH etching of NH_(2)-SiO_(2)@TP-COF, we obtain imine-based TP-COF hollow nanospheres, which shows excellent potassium storage performance when applied to the anode for PIBs. Ex-situ analysis and density functional theory calculations reveal that C=N groups and benzenes are active sites for K^(+) storage.
基金supported by Jinan Mingzhu Co., Ltd (HX20200364)。
文摘Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.
基金supported by the National Natural Science Foundation of China(21476071)Shanghai Leading Academic Discipline Project(B502)the Shanghai Engineering Research Center of Space Engine(13DZ2250600)
文摘CeO2 hollow microspheres were prepared through a facile method by using yeast cells as bio-templates. The yeast pro- vided a solid flame for the deposition of cerium hydroxide to form the hybrid Ce(OH)3@yeast precursor. The resulting CeO2 hollow microspheres were obtained by calcining the precursor. The products were characterized by field emission scanning electron micros- copy (FE-SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption/desorption analysis, X-ray photoelectron spectrum (XPS) and H2 temperature programmed reduction (H2-TPR) It was found that the products fully retained the morphology of the yeast cells and the size of the hollow microspheres was about 1.5-2 μm. The catalytic test results showed that the as-obtained hollow CeO2 microspheres possessed a higher catalytic activity in CO oxidation than the commercial CeO2, which attributed to their higher surface area, hollow structure and superior reducibility. This study provided a promising route for the preparation of a variety of other inorganic hollow microspheres.
基金C. B. G. acknowledges the support from the National Natural Science Foundation of China (Nos. 21671156 and 21301138), the Tang Scholar Program from the Cyrus Tang Foundation, and the start-up fund from Xi'an Jiaotong University. X. G. H acknowledges the programs supported by State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE17306) and Young Talent Support Plan of Xi'an Jiaotong University. Y. D. Y. acknowledges the support from U.S. Department of Energy (No. DE-SC0002247).
文摘Sub-100 nm hollow carbon nanospheres with thin shells are highly desirable anode materials for energy storage applications. However, their synthesis remains a great challenge with conventional strategies. In this work, we demonstrate that hollow carbon nanospheres of unprecedentedly small sizes (down to - 32.5 nm and with thickness of - 3.9 nm) can be produced on a large scale by a templating process in a unique reverse micelle system. Reverse micelles enable a spatially confined Stober process that produces uniform silica nanospheres with significantly reduced sizes compared with those from a conventional Stober process, and a subsequent well-controlled sol-gel coating process with a resorcinol-formaldehyde resin on these silica nanospheres as a precursor of the hollow carbon nanospheres. Owing to the short diffusion length resulting from their hollow structure, as well as their small size and microporosity, these hollow carbon nanospheres show excellent capacity and cycling stability when used as anode materials for lithium/sodium-ion batteries.
基金supported by the National Natural Science Foundation of China(21433011,91527303)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12020100)
文摘Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-D.rA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO2 templates play an important role in the formation of well-defined NH2-f-SiO2@COFTTA-DHXA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO2 cores of NH2-f-SiO2@COFTTA-DHTA. Both the NH2-f-SiO2@COFTTA-I)HTA and COFxTA-DHVA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.
文摘Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CHAp with high crystallinity could be successfully prepared in a short reaction time. A nucleation mechanism was proposed according to the results of characterizing the resultant powders and analyzing the growth process. It shows that the self-made CaCO3 particles play an important role in the template-free synthesis of prickly spheres.